首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
对于社交网络中不同的群组,由于用户属性(性别、年龄等)、群类别、群成员之间关系等因素的影响,其活跃度各不相同.本文首先从社交网络用户数据中提取人口信息、群的类别、社交关系、群用户黏性(分享消息数、图片数)等特征,然后利用logistic回归、支持向量机、BP神经网络等机器学习算法对不同群中用户的活跃度进行预测.结果表明,BP神经网络针对社交网络群中用户活跃度分类判断时具有较高的预测性能,社交关系特征对群用户活跃性具有重要影响.  相似文献   

2.
基于复杂网络理论对社交网络用户影响力进行分析,可以为社会营销、舆情监测、信息检索等众多领域的研究提供支持.传统的网页排序算法虽然可以对有向社交网络的用户影响力进行分析,但仍存在缺陷且复杂度较高.本文提出了一种对无向社交网络进行用户影响力评价的方法,弱化了将有向网络视为无向网络研究而带来的误差,并可以高效地得到重要节点,适用范围更广.首先,本文采用网络节点的度中心性、介数中心性、接近中心性、聚类系数作为节点重要度评价指标,通过对计算数据归一化处理并取均值得到用户影响力排序的基准.其次,采用k-核分解法粗粒化地将重要度相似的节点进行归类,来检验排序的合理性.最后,通过仿真实验以及k-核分解、与HITS算法比较验证了此方法的科学性和正确性.  相似文献   

3.
社交网络服务每天产生大量涉及众多话题的信息,并在影响力各异的用户群体推动下广泛传播。在IP(influence passivity)算法的基础上,提出了一种综合话题相似性与信息时效性的影响力用户发现算法EIP(extended influence-passivity)。该算法在转发网络上考虑用户间话题的相似性以及博文信息时效性,更加精准地建模和计算用户的影响力和消极性。基于新浪微博上爬取的约10万用户数据集上的实验验证,EIP影响力度量算法优于IP和TwitterRank等现有方法。  相似文献   

4.
GitHub社交平台是代码托管领域的主流平台,拥有超过7300万开发人员.评估GitHub社交网络中用户的影响力对开源成果的学习和应用有重要意义.针对PageRank算法及其改进方法在评估用户影响力时对用户交互行为与用户自身因素分析不全面的局限性,提出了一种引入用户行为权值分配策略的影响力计算方法CUIE(Comprehensive User Influence Evaluation)算法,将用户行为对其他用户影响力的贡献比例作为权值计算用户的CUIE值.基于真实数据的实验结果表明:将用户交互行为作为评价用户影响力分析的因素之一,能使模型获得更好的结果,与传统算法进行对比,在Top-500及以上的情况下,CUIE算法均取得最优的准确率和召回率.此方法能有效发现被传统方法忽略的部分核心用户,可作为传统方法的补充,在舆情分析与引导中也具有一定实用价值.  相似文献   

5.
针对现有的社交网络用户推荐方案中主要考虑个体相似性问题以及节点角色无层次差别的问题,提出一种基于相似社团和节点角色划分的推荐方案。在传统的用户相似度计算基础上,从社团结构和属性两方面,综合考虑社团间联系的紧密程度和社团用户兴趣爱好相似程度,提出一种社团相似度的计算方法;其次,从用户节点所在的社团内部和外部2个维度度量节点间紧密度,并据此度量节点的社会影响力,进而将它们划分成不同角色,实现用户推荐的差异化。通过新浪微博真实社交数据对方案进行验证,实验结果表明,该方案适用于存在社团现象的社交网络层次化用户推荐,并具有良好的推荐效果。  相似文献   

6.
用户浏览偏爱模式挖掘算法的研究   总被引:2,自引:0,他引:2  
针对当前的挖掘算法只是简单地把频繁访问路径作为用户浏览的兴趣路径的问题,充分地考虑了用户在页面上的浏览时间和在路径选择上表现出来的浏览偏爱,提出了基于远程代理数据收集的浏览偏爱模式挖掘算法。该算法先利用客户端的远程代理收集用户浏览信息,然后划分成用户事务,最后利用一个递归过程找出用户浏览偏爱模式。实验证明:该算法比当前的频繁访问路径算法在用户浏览兴趣度量上更准确。  相似文献   

7.
赵丽坤  王于可 《科学技术与工程》2020,20(28):11647-11652
为提高社交网络个性化服务质量,研究数据周期推荐算法的重大意义,针对传统推荐算法相似度计算准确率不高,导致推荐结果精度低、召回率低和耗时长等问题,提出一种基于人工智能的社交网络用户行为数据周期推荐算法。首先依据用户行为建立评分矩阵,利用皮尔逊相关系数计算评分矩阵评分值与网络行为数据相似度,依据计算得出的相似度以协同过滤为核心来检出需要推荐的社交网络用户数据内容,其次利用Top-N法生成用户邻居集,最后实现社交网络用户行为数据内容周期推荐。实验测试结果表明,所提算法的相似度计算准确率较高,网络用户行为数据周期推荐结果精度可高达97.2%,且推荐结果召回率高、耗时低,提高了社交网络个性化服务质量。  相似文献   

8.
 以社交网络用户为研究对象,扩充了用户的“获利性”动机和“社交获利”行为,通过调研问卷,利用神经网络模型分析社交网络用户动机与行为的关系。结果表明,不同动机对不同行为的影响程度不同,动机对行为的整体贡献度呈现出有用性 > 自我呈现 > 娱乐性 > 易用性 > 获利性 > 从众性 > 社交性的趋势。建议管理人员持续完善网站的社交和娱乐功能,从用户心理出发构建品牌辨识度高、有特色的社交网络。  相似文献   

9.
社交网络包含复杂的结构信息与丰富的语义信息.互联的多类型数据,实体对象的行为关系等问题的研究面临极大的挑战.知识图谱旨在处理用户数据知识及行为信息,发现事物、概念与实体对象间的复杂联系,使事物间关联关系得到清晰说明.首先介绍知识图谱基本知识;其次基于知识图谱,在社交网络中,可视化表示用户的行为关系,对其中的行为知识抽取...  相似文献   

10.
在线社交网络中用户伪装攻击检测方法研究   总被引:1,自引:0,他引:1  
当前用户伪装攻击检测方法无法适应动态环境,实时性不高;且需要准确的先验知识,检测精度较低。提出一种新的在线社交网络中用户伪装攻击检测方法,介绍了k最邻近节点(KNN)算法的基本思想,给出KNN算法的实现过程。分析了用户伪装攻击检测与分类的关系,确定在线社交网络中用户伪装攻击检测就是对被检测的未知行为进行分类的过程。针对用户行为,将训练集中正常用户行为的邻居进行排列,通过和k相似的邻居的分类标签对新用户行为类别进行判断,从而实现用户伪装攻击检测。实验结果表明,所提方法不仅检测精度高,而且开销小。  相似文献   

11.
传统方法通过提取用户的静态行为特征,利用监督学习模型完成识别,在社交网络规模大的状态下,水军用户团队不当行为特征和正常用户越来越相似,无法准确识别社交网络中水军用户团队的不当行为。为了解决该问题,依据用户动态行为特征研究社交网络中水军用户团队不当行为准确识别技术。对社交网络进行描述,在此基础上,提取用户行为动态特征。把社交网络中水军用户团队不当行为识别问题看作二分类问题,将提取动态特征相应的样本作为输入,构建决策树,通过决策树对新的社交网络数据集进行水军用户团队不当行为识别。结果发现:采用的动态特征可有效反映水军团队不当用户行为特征;所提技术对水军用户团队不当行为的识别结果和人工标识结果基本一致;所提技术在三个数据集上的调和平均值和平衡准确度较其它技术高。可见所提技术识别准确性高。  相似文献   

12.
为了从在线社会网络中识别关键用户,并对用户的关键性进行量化排序,提出URRank算法,通过模拟人类社会的投票行为,综合考虑用户自身的活跃度和用户间的关注与互动关系,经过迭代计算,量化用户的关键性.以新浪微博的部分抓取数据为例,通过比较现有几种关键用户排序算法发现,URRank算法能够避免其他算法存在的被欺骗及片面性问题,识别出具有高认知度和高覆盖度的关键用户.  相似文献   

13.
社交网络社区Leader 选举,即识别社区内影响力最大用户,是社交网络结构分析重要任务之一,在识别意见领袖、增进社区融合等方面具有重要的理论和应用研究价值.传统的社区Leader 选举技术如UserRank和PeopleRank,主要基于社交网络链接分析实现,忽略了用户本身属性的相似度度量.因此得到的社区Leader不能有效保证其社区代表性.本文提出了一种新的用户关系建模方法,将传统的链接分析和用户属性相似度度量融合,有效识别具有代表性的高影响力用户.实验结果表明,提出的方法不仅可以选举出社区内部具有代表性的高影响力Leader 用户,还可以通过社区Leader 选举使得社区内其他用户的查询效率得到有效提高.  相似文献   

14.
在对现有的概率矩阵分解算法研究的基础上,针对其中只使用评分信息来做预测存在较大误差的问题,提出了一种结合用户相似度的社会化推荐算法(SRUS).首先,以概率矩阵分解算法(PMF)为基础,结合用户相似度信息进行建模;其次,使用潜在特征空间将评分矩阵和相似度矩阵关联到一个统一的框架中;最后,对这2个矩阵进行矩阵分解,实现算法的优化推荐.将这一算法与PMF算法进行比较,实验表明,SRUS算法在数据稀疏性、冷启动和精确性方面具有更优的效果.  相似文献   

15.
针对光纤接入(fiber to the x,FTTx)网络规划中频繁路径挖掘问题,在经典算法FP-Growth,SPADE的基础上,结合格理论,利用频繁项集扩展枚举树作为搜索空间,并引入位图方便扩展运算和支持度计算,提出了一个改进的频繁序列挖掘算法FSM+。详细介绍了该算法的相关性质和基本理论,阐述了该算法的基本思想和实现伪码。在VC++6.0和单机的环境下,利用不同规模用户装机数据集和最小支持度比较了该算法与SPADE,FP-Growth算法的性能和准确性。实验证明,FSM+算法在小规模数据集下性能优势并不明显,但在大数据集下其计算性能分别是SPADE,FP-Growth的5倍和7倍多,挖掘结果与SPADE,FP-Growth算法相同。从而在实际网络规划过程中,快速计算信任度较高的频繁模式,并与人工经验干预相结合,来进一步保证预测路径准确有效。  相似文献   

16.
基于生成对抗网络的协同过滤算法(CFGAN)是生成对抗网络在个性化推荐领域上的重大突破,但CFGAN存在缺乏对用户可能交互物品的关注以及面对稀疏数据场景特征提取能力较弱的问题。另外,结合负采样技术提出的优化CFGAN方案存在无法结合用户属性抽取负样本的缺陷。为此,本文提出一种改进的CFGAN模型,通过引入增强的置换注意力机制强化面向稀疏数据集的特征聚焦能力,同时考虑用户可能交互物品对推荐结果的影响;此外,采用协同用户社交网络从用户反馈中提取的语义好友特征嵌入CFGAN,以实现负样本的个性化抽取,进一步提升模型面向稀疏数据场景的推荐效果。  相似文献   

17.
本文提出了一种基于遗传算法,结合网站的拓扑结构,对网站用户进行聚类分析的模型,阐述了遗传算法在优化过程中染色体编码、遗传算子的设计等问题.实验证明能解决常规聚类算法不能有效处理局部极值、聚类结果对初始聚类中心的选取有着很大的敏感性的问题,是一种有实用价值的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号