首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
SBS改性沥青基吸水膨胀防水材料的研制   总被引:1,自引:0,他引:1  
以改性沥青(沥青、SBS、基础油的质量比为100:14:6)为基质,加入吸水物质A或吸水物质B,混合均匀后制成吸水膨胀型防水材料。实验结果表明,以此改性沥青为基质的材料具有好的形状保持能力和耐热能力。当A物质与改性沥青的质量比由0.67增加到1.50时,所研制的材料不具有吸水膨胀性能;当B物质与改性沥青的质量比为0.05—0.11时,所研制的材料的吸水能力适中,具有好的吸水性能;当B物质与改性沥青的质量比为0.05及A物质与改性沥青的质量比为0.15—0.30时,所研制的材料吸水能力适中,性能优良,可用作吸水膨胀材料。材料的吸水膨胀能力随着B物质含量的增加而增大。随着A物质含量的增加,吸水膨胀材料的断裂延伸值、弹性恢复率都有减小的趋势。当B物质与改性沥青的质量比小于0.25时,B物质的加入对改性沥青的断裂延伸值和弹性恢复率影响不大。A物质和B物质复配的效果好于单独使用A物质和B物质的效果。  相似文献   

2.
环氧树脂改性沥青材料研究   总被引:8,自引:1,他引:7  
研究了采用环氧树脂来提高沥青使用性能的方法.通过比较有无采用高速剪切分散制成沥青材料的微观结构,确定了制备改性沥青材料时的合理方法.对研制材料的拉伸性能进行检测表明:其抗拉强度最高达1.78 MPa,断裂延伸率最高达到241.61%,满足环氧树脂改性沥青材料的要求.由马歇尔实验确定了混合料的最佳油石质量比,并按该比例制成复合梁进行了疲劳实验,复合梁在疲劳实验中表现出良好的抗疲劳性能,耐疲劳次数可达1 200万次以上.  相似文献   

3.
通过岩心自吸水实验研究 ,表明南翼山某区块裂缝性储层有强的自吸水能力 ,吸水速度快 ,在2 0h内即可达到较高的自吸水饱和度 ,终吸水饱和度平均为 5 4.5 % ,终吸水驱油效率平均为 37% ;且黏土矿物含量越高 ,吸水量越多 ,岩心膨胀越严重 ,平均体积膨胀 4 .5 % .自吸水后对储层渗透率伤害严重 ,平均可达到 81.8% .因此 ,在开发过程中应尽可能减少水侵入储层  相似文献   

4.
为了探明能源基质中Fe/S质量比对铁硫氧化细菌菌群浸铀行为的影响及其作用机制,研究了不同Fe/S质量比作用下铁硫氧化细菌菌群浸铀过程中的浸出液变化、钝化层表面特性及微生物群落动态三方面的差异。结果表明:当Fe/S质量比为5∶0.5、5∶1和5∶5时,铀浸出率均达到90%以上,而在Fe/S质量比为5∶0和5∶10,铀浸出率降低,分别为45.92%和36.96%;添加一定硫粉后(Fe/S质量比为5∶0.5、5∶1和5∶5),可降低体系酸度,降低矿物表面钝化物的产生,增加钝化物的孔隙度,但是添加量过高致使矿石表面形成多硫聚合物而降低A.ferrooxidans的活性,不利于铀的浸出。当Fe/S质量比为5∶0.5、5∶1和5∶5时,浸矿前期A.thiooxidans A01浓度较高,有利于降低体系的pH,创造良好的浸铀条件;在浸矿后期,A.ferrooxidans ATCC 23270浓度逐渐升高,在浸铀过程中发挥着主导作用。  相似文献   

5.
研究了Mg-A1类水滑石(HTlc)正电胶合成原料配比、电性及粒度对抑制黏土吸水膨胀能力的影响.实验结果表证明,合成原料的Mg/A1摩尔比为3:1时抑制黏土吸水膨胀的效果最好;正电胶颗粒的ξ电位越大,平均粒度越小,抑制能力越强.  相似文献   

6.
主要研究了粉煤灰含量对石油沥青性能的影响,探讨了不同质量比的石油沥青/粉煤灰对于SBS改性沥青性能的影响,同时研究了不同用量的芳烃油、SBS对改性石油沥青性能的影响.研究结果表明,石油沥青和粉煤灰的比例在一定范围内,使改性沥青的延度等指标完全满足SBSI-C标准.当石油沥青与煤沥青的质量比为60/22时,其综合性价比达...  相似文献   

7.
目的研究配料比、表面活性剂及反应时间、温度等因素对油分回收率的影响;测试改性沥青的结构,针入度、软化点及延度;分析SBS改性沥青、硅藻土改性沥青结构.方法以减压渣油作溶剂,提取印尼布敦岩沥青中油分;用提取的岩沥青油分制备改性沥青,通过红外光谱图、扫描电镜照片分析其结构.结果当布敦岩沥青与减压渣油的配料质量比为1∶1.5,表面活性剂w=0.5%,反应时间2 h,反应温度140℃时,油分回收率可高达90.1%;随改性剂SBS掺量的增大,改性沥青的针入度降低,软化点升高,延度有所改善;随硅藻土掺量的增大,改性沥青针入度大大降低,软化点升高,延度降低.当SBS掺量为1%~2%时,SBS改性沥青各项性能得到明显改善;当硅藻土掺量为12%~15%时,试验结果最佳.结论利用减压渣油提取布敦岩沥青中的油分,经过滤得到的渣油与油分的混合物,无需再做分离处理,即可进行改性实验.与常规方法相比,不仅提高了回收率,而且降低了生产成本;利用布敦岩沥青油分制备改性沥青,不但拓展了改性沥青的研制方法,而且提高了布敦岩沥青的使用价值..  相似文献   

8.
考察野外腐化的黄花鸢尾生物质炭在黄花鸢尾模拟湿地系统中维持浮游植物群落稳定性的作用. 实验结果表明: 当湿地基质中生物质炭施加质量比为5 g/kg时, 生物质炭可通过吸附 解析作用维持模拟湿地系统水相中酮类物质质量浓度的稳定; 该稳定作用可使浮游植物群落处于相对稳定的化感物质胁迫强度下, 进而使群落小演替能正常进行.  相似文献   

9.
玉米淀粉接枝丙烯酸钠合成高吸水性树脂   总被引:13,自引:0,他引:13  
玉米淀粉糊化后 ,以过硫酸铵为引发剂 ,与丙烯酸发生接枝共聚反应 ,制的超强吸水剂 .籍此讨论了引发剂用量 ,丙烯酸与淀粉配比等因素对吸水性能的影响 .引发剂用量为淀粉用量的 1 .5 % ,淀粉 /丙烯酸 (质量比 )为 1 /6时 ,合成的超强吸水剂室温下在饱和状态时可吸收 5 5 0倍的蒸馏水 ,2 5 0倍自来水 ,80~ 1 0 0倍生理盐水 ,4 0~ 5 0倍人工尿 ,同时还具有优越的保水性能 .  相似文献   

10.
为了探明纳米偏高岭土对水泥基材料断裂性能的影响规律,采用5种纳米偏高岭土质量分数(1%、3%、5%、10%、15%),制备了纳米偏高岭土水泥砂浆切口试验梁,完成了带切口纳米偏高岭土水泥砂浆试件的三点弯曲试验和不同质量分数纳米偏高岭土水泥砂浆抗折、抗压强度试验.得到了不同质量分数纳米偏高岭土水泥砂浆的荷载-位移曲线及抗折、抗压强度,探讨了纳米偏高岭土对水泥砂浆断裂能、承载力、变形性能及抗折、抗压强度的影响规律.研究结果表明:当纳米偏高岭土质量分数小于5%时,砂浆试件断裂能、承载能力、变形性能、抗折与抗压强度随着纳米偏高岭土质量分数增加而逐渐增加,当质量分数为5%时断裂能为普通水泥砂浆的3.34倍;随着纳米偏高岭土质量分数的进一步增加,纳米偏高岭土水泥砂浆试件断裂能不断降低,当质量分数达到15%时,断裂能降为普通水泥砂浆的1.47倍.因此,掺加适量纳米偏高岭土能够在一定程度上提高水泥砂浆抗裂性能.  相似文献   

11.
为研究废机油对老化苯乙烯-丁二烯-苯乙烯嵌段共聚物(styrene-butadiene-styrene, SBS)改性沥青的再生效果及再生机理。采用沥青加速老化试验模拟长期老化过程制备老化SBS改性沥青,分别添加不同含量的废机油制备再生沥青,并结合沥青物理性能、流变性能试验评价再生SBS改性沥青性能。在此基础上,采用红外光谱试验、四组分分析试验、荧光显微分析试验探究废机油再生SBS改性沥青机理。研究结果表明:老化后SBS改性沥青针入度与延度降低,软化点与粘度增加,废机油的掺入将会增加老化SBS改性沥青针入度与延度,降低软化点与粘度,且与废机油掺量呈正比;废机油的使用将会降低再生SBS改性沥青的高温流变性能,提高再生SBS改性沥青的疲劳寿命;废机油能够降低老化SBS改性沥青劲度模量,对蠕变速率指标影响不显著;SBS改性沥青在老化过程中SBS发生破坏,沥青中的羰基与亚砜基含量增加,而废机油的掺入将会降低老化沥青中羰基与亚砜基含量,属于物理再生过程;SBS改性沥青老化后,饱和分、芳香分含量减少,胶质、沥青质含量增加,而废机油掺入后影响则反之;废机油的掺加将会使断裂的SBS分子部分溶胀,恢复沥青性能。  相似文献   

12.
郑茂 《科学技术与工程》2022,22(6):2477-2484
橡胶类改性沥青混合料的高温性能一直是中外研究的热点问题.采用浸水汉堡车辙试验,针对普通橡胶沥青、溶解性(terminal blend,TB)胶粉改性沥青及TB复合改性沥青混合料在水-热综合作用下的抗车辙性能进行评价与对比.实验结果表明,对于传统橡胶沥青来说,其在浸水条件下的高温抗车辙性能随着掺量的增大而先下降后上升,掺...  相似文献   

13.
何静 《科学技术与工程》2020,20(20):8331-8336
岩沥青改性沥青具有较好的抗车辙能力、抗水损坏能力和抗疲劳能力,但低温抗裂性能较差,以玄武岩纤维和聚酯纤维作为岩沥青的增强材料,采用车辙试验、低温弯曲试验、浸水马歇尔试验、冻融劈裂试验和三轴剪切试验分别对比了岩沥青和纤维复合改性沥青混合料、基质沥青混合料以及SBS(styrene butadiene styrene)改性沥青混合料的高、低温性,水稳定性能,力学性能。试验结果表明,青川岩沥青与纤维复配的复合改性沥青混合料具有优良的路用性能,纤维的加筋作用能够有效改善岩沥青改性沥青的低温抗裂性能,且玄武岩纤维的改性效果优于聚酯纤维,推荐最佳的复配方案为6%青川岩沥青+0.30%玄武岩纤维。  相似文献   

14.
基于粘弹性理论的天然沥青复合改性沥青低温流变性能   总被引:1,自引:1,他引:0  
为优化天然沥青低温性能欠佳的问题,采用低温弯曲流变试验(BBR)对不同掺量下的橡胶/天然沥青及SBS/天然沥青复合改性沥青的低温性能进行试验,并结合Burgers模型对其蠕变数据进行拟合以分析天然沥青复合改性沥青的低温性能。结果表明:橡胶和SBS掺入使XRA和TLA天然改性沥青的粘性和弹性得到相应的改善,且其松弛时间逐渐减小,耗散能比与蠕变导数逐渐增加,低温下的应力松弛能力及弹性后效的到改善;在同一温度下,橡胶和SBS延缓了XRA与TLA到达蠕变稳定的时长,但随着温度的不断降低,其蠕变稳定时长逐渐减小。随着橡胶和SBS掺量的增加XRA和TLA复合改性沥青的低温性能有显著的提高,且橡胶对XRA和TLA天然改性沥青低温性能的改善优于SBS;随着温度的降低,不同掺量下的橡胶和SBS对其低温性能的改善程度逐渐减小。  相似文献   

15.
通过分析改性剂和增塑剂在沥青改性中的作用机理,确定了采用高掺量线型SBS、高掺量芳烃油和氧化剂复配改性沥青的技术路线和高温高速剪切共混的改性工艺,制备了低温敏性高黏弹沥青冲击隔离防护材料,系统测试了高黏弹沥青不同时温条件下的微观结构和剪切模量等.研究表明:研制的高黏弹沥青在充分溶胀、交联后,沥青与改性剂形成了相与相互穿的半互穿网络结构,与10%线型SBS改性沥青相比,其动态剪切模量和温敏性大幅度降低;与针入度温敏性表征方法相比,采用动态剪切模量温敏性表征方法更能准确反映沥青材料的温敏性.  相似文献   

16.
采用动态剪切流变、重复蠕变和弯曲梁流变等试验分别对多聚磷酸改性沥青、聚合物改性沥青以及聚合物复配多聚磷酸改性沥青在高、低温状态下的流变特性进行了系统研究.结果表明,多聚磷酸能够改善基质沥青和聚合物改性沥青的高低温性能;多聚磷酸与苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性剂在改善沥青高温性能机制上存在明显不同,多聚磷酸的掺入显著增加了沥青的黏度,而对沥青的弹性变形恢复能力贡献较小,而SBS改性剂可大幅度提高沥青的弹性变形恢复能力.采用核磁共振(NMR)试验对多聚磷酸改性沥青的改性机理进行了初步分析,发现多聚磷酸与沥青发生了接枝、磷酸酯化和环化反应,从而改变了沥青的碳链结构和化学结构,宏观上使沥青变得更加黏稠.  相似文献   

17.
布敦岩沥青混合料路用性能的试验研究   总被引:5,自引:0,他引:5  
为评价布敦岩沥青对基质沥青混合料的改性效果,采用A-70沥青作为基质沥青,对不同掺量布敦岩沥青混合料的路用性能进行了试验研究.结果表明:布敦岩沥青混合料的马歇尔稳定度、劈裂抗拉强度和水稳定性明显优于基质沥青混合料和SBS改性沥青混合料;其动稳定度远远高于基质沥青混合料,接近于SBS改性沥青混合料;布敦岩沥青能有效改善混合料的低温性能,但当布敦岩沥青掺量从20%增加到25%时,混合料的低温性能有所降低,因此工程应用中的布敦岩沥青掺量不宜超过25%.  相似文献   

18.
为了评价沥青面层间黏层油的实际效果,选取苯乙烯-丁二烯-苯乙烯嵌段共聚物改性沥青、苯乙烯-丁二烯橡胶改性乳化沥青、乳化沥青及石油沥青等4种较常用的黏层油,把沥青面层粘结在一起,模拟沥青面层间的实际状态,通过室内拉拔和车辙试验,以抗车辙能力及粘结力为标准对其实际效果进行了试验研究.研究结果表明,喷洒用量为0.2~0.3kg/m^2的苯乙烯.丁二烯-苯乙烯嵌段共聚物改性沥青和苯乙烯-丁二烯橡胶改性乳化沥青粘结效果较好.  相似文献   

19.
为探索改性沥青宏观性能与显微形态结构的关系,选取3类、4种剂量的SBS改性剂与2种基质沥青分别制备改性沥青,通过环球软化点、布氏黏度、动态剪切流变试验及荧光显微镜分析技术,从宏观性能与微观形态结构方面同时探讨比较了各类SBS改性沥青。结果表明:改性沥青性能是改性剂在沥青中的相态、形状、大小、百分率含量和均匀性等微观形态共同作用的结果。一般地,改性剂粒子面积百分率越大、长短轴之比及其标准差越小、平均面积越小,改性沥青的改性效果越好。研究成果为后续根据改性沥青微观形态参数定量改性沥青的性能研究奠定了基础。  相似文献   

20.
改性剂与沥青的相容性是决定改性效果和改性沥青制作工艺的关键因素,而聚合物改性沥青的相容性与基质沥青的组成、聚合物的剂量、聚合物成分结构以及贮存温度密切相关。利用热贮存稳定性试验系统研究了SBS与基质沥青的相容性。结果表明,线形SBS普遍比星型SBS具有较好的相容性,SBS含量小于3%时的改性沥青的稳定性也较好,沥青质含量适中、芳香分含量越小的基质沥青与SBS相容性也越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号