共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
文章简要介绍了等通道转角挤压(ECAP)在镁合金成型中的应用,并且从等通道转角挤压机理及其对镁合金材料的组织和性能影响的角度进行了分析。 相似文献
3.
4.
5.
6.
变形镁合金材料具有很大的发展前途与潜力,通过变形可以生产尺寸多样的板、棒、管、型材及锻件产品,并且可以通过材料组织的控制,获得比铸造镁合金材料更高的强度、更好的延展性、更多样化的力学性能,从而满足更多结构件的需要.[2]对目前研究尚不充分但很有潜力的AZ80变形镁合金的挤压、力学性能测试,以及对微观组织的分析等实验研究发现,挤压成形过程使合金发生动态再结晶,硬度随着挤压次数的增加而降低. 相似文献
7.
8.
温度是影响动力电池性能的关键因素.高效热管理技术可有效控制动力电池温度和温差.本研究采用微通道热管阵列作为电池热管理系统的热传导元件,分析了其在高热功率密度下的传热性能,理论计算了其等效导热系数,优化分析了其槽道尺寸对流动传热的影响,对比了其与主流散热技术的性能差异.研究发现,热功率密度为0.3658 W cm-2时,强制风冷散热条件下,采用微通道热管阵列技术可维持热源处表面温度45℃以下,温差1.3℃以下,低于无微通道热管阵列导热情况下的温升15℃,温差3.8℃.随着热功率密度增大至0.9176 W cm-2,微通道热管阵列的等效导热系数增大为6027 W m-1K-1,其热源处表面最大瞬态温差约2.75℃.增大槽道尺寸参数可进一步改善微通道热管阵列的导热系数,改善其传热性能,但对液体回流驱动力有一定影响.该阵列具有较好的动态工况热稳定性和低温快速加热能力.与烧结热管组的温度性能相比,微通道热管阵列组最大温度可降低15.1℃,表面温差降低14℃,具有显著降温和均温优势,表明微通道热管阵列在动力电池... 相似文献
9.
10.
11.
12.
建筑用钢材面广量大,质量至关重要。建筑钢材拉伸试验,是钢材检测分析的重要内容之一,除能检测钢材屈服强度和抗拉强度等强度指标外,还能检测出钢材的塑性。本文对常用建筑钢材拉伸试验的流程及具体方法进行了分析。 相似文献
13.
建筑用钢材面广量大,质量至关重要.建筑钢材拉伸试验,是钢材检测分析的重要内容之一,除能检测钢材屈服强度和抗拉强度等强度指标外,还能检测出钢材的塑性.本文对常用建筑钢材拉伸试验的流程及具体方法进行了分析. 相似文献
14.
15.
16.
17.