首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
REST maintains self-renewal and pluripotency of embryonic stem cells   总被引:3,自引:0,他引:3  
  相似文献   

2.
Leukaemias and other cancers possess a rare population of cells capable of the limitless self-renewal necessary for cancer initiation and maintenance. Eradication of these cancer stem cells is probably a critical part of any successful anti-cancer therapy, and may explain why conventional cancer therapies are often effective in reducing tumour burden, but are only rarely curative. Given that both normal and cancer stem cells are capable of self-renewal, the extent to which cancer stem cells resemble normal tissue stem cells is a critical issue if targeted therapies are to be developed. However, it remains unclear whether cancer stem cells must be phenotypically similar to normal tissue stem cells or whether they can retain the identity of committed progenitors. Here we show that leukaemia stem cells (LSC) can maintain the global identity of the progenitor from which they arose while activating a limited stem-cell- or self-renewal-associated programme. We isolated LSC from leukaemias initiated in committed granulocyte macrophage progenitors through introduction of the MLL-AF9 fusion protein encoded by the t(9;11)(p22;q23). The LSC were capable of transferring leukaemia to secondary recipient mice when only four cells were transferred, and possessed an immunophenotype and global gene expression profile very similar to that of normal granulocyte macrophage progenitors. However, a subset of genes highly expressed in normal haematopoietic stem cells was re-activated in LSC. LSC can thus be generated from committed progenitors without widespread reprogramming of gene expression, and a leukaemia self-renewal-associated signature is activated in the process. Our findings define progression from normal progenitor to cancer stem cell, and suggest that targeting a self-renewal programme expressed in an abnormal context may be possible.  相似文献   

3.
4.
Nanog safeguards pluripotency and mediates germline development   总被引:3,自引:0,他引:3  
  相似文献   

5.
Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal and adult sources have been called stem cells, even though they range from pluripotent cells-typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation-to adult stem cell lines, which can generate a far more limited repertoire of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine has highlighted the need for a general, reproducible method for classification of these cells. We report here the creation and analysis of a database of global gene expression profiles (which we call the 'stem cell matrix') that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent and differentiated cell types. Using an unsupervised clustering method to categorize a collection of approximately 150 cell samples, we discovered that pluripotent stem cell lines group together, whereas other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis we uncovered a protein-protein network (PluriNet) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas and induced pluripotent cells). Analysis of published data showed that the PluriNet seems to be a common characteristic of pluripotent cells, including mouse embryonic stem and induced pluripotent cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotency and self-renewal are under tight control by specific molecular networks.  相似文献   

6.
7.
N-CoR controls differentiation of neural stem cells into astrocytes   总被引:36,自引:0,他引:36  
Hermanson O  Jepsen K  Rosenfeld MG 《Nature》2002,419(6910):934-939
  相似文献   

8.
  相似文献   

9.
10.
11.
12.
13.
Zon LI 《Nature》2008,453(7193):306-313
When stem cells divide, they can generate progeny with the same developmental potential as the original cell, a process referred to as self-renewal. Self-renewal is driven intrinsically by gene expression in a cell-type-specific manner and is modulated through interactions with extrinsic cues from the environment, such as growth factors. However, despite the prevalence of the term self-renewal in the scientific literature, this process has not been defined at the molecular level. Haematopoietic stem cells are an excellent model for the study of self-renewal because they can be isolated prospectively, manipulated relatively easily and assessed by using well-defined assays. Establishing the principles of self-renewal in haematopoietic stem cells will lead to insights into the mechanisms of self-renewal in other tissues.  相似文献   

14.
Immunogenicity of induced pluripotent stem cells   总被引:1,自引:0,他引:1  
Zhao T  Zhang ZN  Rong Z  Xu Y 《Nature》2011,474(7350):212-215
Induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells with defined factors, hold great promise for regenerative medicine as the renewable source of autologous cells. Whereas it has been generally assumed that these autologous cells should be immune-tolerated by the recipient from whom the iPSCs are derived, their immunogenicity has not been vigorously examined. We show here that, whereas embryonic stem cells (ESCs) derived from inbred C57BL/6 (B6) mice can efficiently form teratomas in B6 mice without any evident immune rejection, the allogeneic ESCs from 129/SvJ mice fail to form teratomas in B6 mice due to rapid rejection by recipients. B6 mouse embryonic fibroblasts (MEFs) were reprogrammed into iPSCs by either retroviral approach (ViPSCs) or a novel episomal approach (EiPSCs) that causes no genomic integration. In contrast to B6 ESCs, teratomas formed by B6 ViPSCs were mostly immune-rejected by B6 recipients. In addition, the majority of teratomas formed by B6 EiPSCs were immunogenic in B6 mice with T cell infiltration, and apparent tissue damage and regression were observed in a small fraction of teratomas. Global gene expression analysis of teratomas formed by B6 ESCs and EiPSCs revealed a number of genes frequently overexpressed in teratomas derived from EiPSCs, and several such gene products were shown to contribute directly to the immunogenicity of the B6 EiPSC-derived cells in B6 mice. These findings indicate that, in contrast to derivatives of ESCs, abnormal gene expression in some cells differentiated from iPSCs can induce T-cell-dependent immune response in syngeneic recipients. Therefore, the immunogenicity of therapeutically valuable cells derived from patient-specific iPSCs should be evaluated before any clinic application of these autologous cells into the patients.  相似文献   

15.
16.
17.
18.
Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation   总被引:2,自引:0,他引:2  
Lee CY  Robinson KJ  Doe CQ 《Nature》2006,439(7076):594-598
How a cell chooses to proliferate or to differentiate is an important issue in stem cell and cancer biology. Drosophila neuroblasts undergo self-renewal with every cell division, producing another neuroblast and a differentiating daughter cell, but the mechanisms controlling the self-renewal/differentiation decision are poorly understood. Here we tested whether cell polarity genes, known to regulate embryonic neuroblast asymmetric cell division, also regulate neuroblast self-renewal. Clonal analysis in larval brains showed that pins mutant neuroblasts rapidly fail to self-renew, whereas lethal giant larvae (lgl) mutant neuroblasts generate multiple neuroblasts. Notably, lgl pins double mutant neuroblasts all divide symmetrically to self-renew, filling the brain with neuroblasts at the expense of neurons. The lgl pins neuroblasts show ectopic cortical localization of atypical protein kinase C (aPKC), and a decrease in aPKC expression reduces neuroblast numbers, suggesting that aPKC promotes neuroblast self-renewal. In support of this hypothesis, neuroblast-specific overexpression of membrane-targeted aPKC, but not a kinase-dead version, induces ectopic neuroblast self-renewal. We conclude that cortical aPKC kinase activity is a potent inducer of neuroblast self-renewal.  相似文献   

19.
J Magram  K Chada  F Costantini 《Nature》1985,315(6017):338-340
At different stages of mammalian development, distinct embryonic, fetal and adult haemoglobins are synthesized in erythroid cells, a process termed haemoglobin switching. The cellular and molecular mechanisms controlling haemoglobin switching have been intensively studied, but remain poorly understood. To study the developmental regulation of globin gene expression, we have produced transgenic mice in which cloned globin genes are present in erythroid cells throughout development. Recently, we reported that adult mice in several transgenic lines carrying a hybrid mouse/human adult beta-globin gene, expressed the gene in a correct tissue-specific manner. This finding raised the question of whether an exogenous globin gene could also be subject to appropriate stage-specific regulation. We report here that the hybrid beta-globin gene, like the endogenous adult beta-globin genes, is inactive in yolk sac-derived embryonic erythroid cells and is expressed for the first time in fetal liver erythroid cells. Our results indicate that a stage-specific pattern of expression can be conferred by cis-acting regulatory elements closely linked to an adult beta-globin gene. They also suggest that the embryonic and adult beta-globin genes in the mouse are activated (or repressed) by distinct trans-acting regulatory factors present in embryonic, fetal and adult erythroid cells.  相似文献   

20.
Effects of the steel gene product on mouse primordial germ cells in culture.   总被引:21,自引:0,他引:21  
I Godin  R Deed  J Cooke  K Zsebo  M Dexter  C C Wylie 《Nature》1991,352(6338):807-809
Mutations at the steel (sl) and dominant white spotting (W) loci in the mouse affect primordial germ cells (PGC), melanoblasts and haemopoietic stem cells. The W gene encodes a cell-surface receptor of the tyrosine kinase family, the proto-oncogene c-kit. In situ analysis has shown c-kit messenger RNA expression in PGC in the early genital ridges. The Sl gene encodes the ligand for this receptor, a peptide growth factor, called here stem cell factor (SCF). SCF mRNA is expressed in many regions of the early mouse embryo, including the areas of migration of these cell types. It is important now to identify the role of the Sl-W interaction in the development of these migratory embryonic stem cell populations. Using an in vitro assay system, we show that SCF increases both the overall numbers and colony sizes of migratory PGC isolated from wild-type mouse embryos, and cultured on irradiated feeder layers of STO cells (a mouse embryonic fibroblast line). In the absence of feeder cells, SCF causes a large increase in the initial survival and apparent motility of PGC in culture. But labelling with bromodeoxyuridine shows that SCF is not, by itself, a mitogen for PGC. SCF does not exert a chemotropic effect on PGC in in vitro assays. These results suggest that SCF in vivo is an essential requirement for PGC survival. This demonstrates the control of the early germ-line population by a specific trophic factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号