首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
在低熔点Sn2.5Ag0.7Cu0.1RE钎料合金粉末冶金制备工艺设计基础上,研究了预压和烧结对钎料合金组织与力学性能的影响。研究结果表明:低熔点Sn2.5Ag0.7Cu0.1RE钎料合金粉末冶金工艺预压应力和烧结温度分别为160 MPa和210℃,均高于高熔点铜、铝合金的预压应力和烧结温度。与熔炼法相比,Sn2.5Ag0.7Cu0.1RE钎料合金抗拉强度提高了15.5%。烧结会影响Sn2.5Ag0.7Cu0.1RE钎料合金初生β-Sn相和共晶组织形态,随烧结温度升高,初生β-Sn相组织比例升高。  相似文献   

2.
借助扫描电子显微镜、能谱仪、X射线衍射仪和微剪切试验等手段,研究了镀镍还原氧化石墨烯(Ni-rGO)增强Sn2.5Ag0.7Cu0.1RE复合钎料/Cu钎焊接头电迁移组织与性能。研究结果表明:在恒温120℃、电流密度1×10~4 A/cm~2条件下,随着通电时间的增加,Ni-rGO增强Sn2.5Ag0.7Cu0.1RE复合钎料/Cu钎焊接头电迁移阳极区金属间化合物(IMC)层Cu_6Sn_5和Cu_3Sn平均厚度增大,阴极区界面IMC层Cu_6Sn_5平均厚度减小、Cu_3Sn平均厚度先增大后减小。Ni-rGO的添加,明显抑制了Ni-rGO增强Sn2.5Ag0.7Cu0.1RE复合钎料/Cu钎焊接头电迁移阳极区Cu_6Sn_5的生长及阴极区微空洞的生成,提高了钎焊接头剪切强度。通电72 h后,Ni-rGO增强Sn2.5Ag0.7Cu0.1RE复合钎料/Cu钎焊接头的剪切强度较未添加Ni-rGO的提高了47.8%。复合钎料/Cu钎焊接头电迁移剪切断裂,由阴极钎缝区呈以韧窝为主的韧性断裂,向界面IMC由解理、准解理和少量韧窝组成的混合型断裂转变。  相似文献   

3.
SnAgCu无铅钎料对接接头时效过程中IMC的生长   总被引:3,自引:0,他引:3  
无铅钎料和铜基板间金属间化合物(Intermetallic Compounds,IMC)的生长对元器件的可靠性有重要影响.使用Sn3.8Ag0.7Cu无铅钎料焊接Cu对接接头,并对对接头进行了125、150和175℃时效试验,时效时间分别为0、24、72、144、256、400 h.采用金相显微镜、扫描电镜(SEM)和能谱X射线(EDX)观察了Sn3.8Ag0.7Cu/Cu界面IMC的生长及形貌变化,并对Sn3.8Ag0.7Cu/Cu界面扩散常数和生长激活能进行了拟合.此外,研究了时效对钎焊接头抗拉强度的影响,发现在时效条件下接头的抗拉强度呈先上升后下降的变化,且时效会对断裂形式造成影响.  相似文献   

4.
SnCu共晶钎料在波峰焊领域被公认为SnPb共晶及近共晶钎料的最佳替代合金之一,但其熔点高,力学性能不良。本文采用合金化原理,在Sn0.7Cu合金中添加微量的Ag形成SnCuAg三元合金来改善合金性能。结果表明:当Ag质量分数小于0.2%时,随Ag含量增加,SnCuAg钎料抗拉强度和剪切强度逐渐提高;当Ag质量分数为0.2%时,SnCuAg抗拉强度较基体提高35.5%,剪切强度较基体提高46.5%。当Ag质量分数大于0.2%时,钎料合金的力学性能有所下降,这主要与新相Ag3Sn弥散强化作用及母材界面金属间化合物有关。  相似文献   

5.
采用粉末熔化法制备了镍粒子修饰的还原氧化石墨烯(Ni-rGO)增强Sn2. 5Ag0. 7Cu0. 1RE复合钎料,借助于扫描电子显微镜和X射线衍射,研究了Ni-rGO增强Sn2. 5Ag 0. 7Cu 0. 1RE复合钎料钎焊接头的显微组织与性能。研究结果表明:Ni-rGO增强Sn2. 5Ag0. 7Cu0. 1RE复合钎料与Cu基板可实现良好焊接。在钎焊温度270℃、钎焊时间240 s时,复合钎料钎焊接头剪切强度为29. 7 MPa,高于Sn3. 0Ag0. 5Cu钎料钎焊接头。随着钎焊时间的增加,钎焊接头剪切断裂机制呈现由以韧窝为主的韧性断裂向韧窝和解理组成的韧-脆混合断裂转变,断裂途径由钎缝和界面金属间化合物(IMC)层组成的过渡区向界面IMC方向移动。复合钎料钎焊接头钎缝区由β-Sn和共晶组织组成,界面IMC层由Cu6Sn5和新相(Cu,Ni)6Sn5组成。Ni-rGO增强Sn2. 5Ag0. 7Cu0. 1RE复合钎料钎焊接头的IMC厚度、粗糙度增加,界面IMC显微组织由扇贝状转变为锯齿状。  相似文献   

6.
研究了温度对Sn2.5Ag0.7Cu0.1RE/Cu钎焊接头电迁移组织与性能的影响。随着环境温度从100℃升高到140℃,及通电时间从24 h延长到72 h,Sn2.5Ag0.7Cu0.1RE/Cu钎焊接头阴极侧界面间金属化合物(IMC)Cu_6Sn_5逐渐变薄,由"扇贝状"变为"锯齿状"。阳极侧界面间IMC逐渐增厚,由"扇贝状"不断长大并形成凸起的小丘,且在母材接合处出现一层薄薄的Cu3Sn层。界面阳极侧IMC增加的厚度比界面阴极侧IMC减少的厚度大。Sn2.5Ag0.7Cu0.1RE/Cu钎焊接头剪切强度持续降低。随着温度升高,相应的剪切断口由钎缝区的解理与韧窝共存在的混合型断裂,逐渐变为界面阴极侧IMC的以解理为主的脆性断裂。  相似文献   

7.
针对微焊点服役过程中由大温度梯度导致的热迁移问题,设计了一种热迁移试验装置,研究了复合钎料/Cu钎焊接头热迁移过程中的组织演变与力学性能.研究结果表明:设计的试验装置可满足单一热迁移试验条件.与未热加载时相比,Ni-GNSs增强Sn2.5Ag0.7Cu0.1RE复合钎料/Cu钎焊接头热迁移200 h后,接头热端Cu6 Sn5界面金属间化合物(IMC)大幅减薄并在界面出现微孔洞;冷端界面粗大扇贝状IMC厚度明显增加,冷端Cu/Cu6 Sn5界面间生成平均厚度1μm的层状IMC Cu6 Sn5.热加载200 h后,钎焊接头剪切强度降低33%.复合钎料钎焊接头断裂位置由热端界面IMC/钎缝的过渡区向界面IMC方向迁移;随热加载时间增加其断裂机制由韧性断裂向先转变为以韧性断裂为主的韧-脆混合断裂,再转变为以脆性断裂为主的韧-脆混合断裂.Ni-GNSs增强相的添加可抑制复合钎料/Cu钎焊接头的热迁移.  相似文献   

8.
基于Garofalo-Arrhenius蠕变模型,采用有限元法模拟WLCSP 5×6器件低银Sn1.0Ag0.5Cu无铅焊点的应力-应变响应,并借助蠕变应变疲劳寿命预测模型计算Sn1.0Ag0.5Cu焊点疲劳寿命.结果表明:在交变的温度循环载荷作用下,整个电子器件出现明显的翘曲现象,中心焊点的应力-应变最小,从中心到拐角焊点应力-应变逐渐增加,拐角焊点应力-应变最大.随着服役时间的增加,焊点内部的蠕变应变显著增加.计算Sn3.0Ag0.5Cu,Sn1.0Ag0.5Cu和Sn37Pb三种焊点的疲劳寿命,发现Sn3.0Ag0.5Cu焊点疲劳寿命明显高于另外2种焊点,Sn1.0Ag0.5Cu和Sn37Pb焊点的疲劳寿命相当.证明了低银Sn1.0Ag0.5Cu无铅钎料可以代替Sn37Pb钎料应用于电子封装,研究结果为低银无铅钎料和焊点可靠性的研究提供了理论支撑.  相似文献   

9.
针对微焊点服役下的电迁移可靠性检测,设计制造了满足焊点在理想电迁移环境下的试验装置。结果表明:通过热分解法制备Ni-GNSs增强相,得到的Ni-GNSs增强Sn2.5Ag0.7Cu0.1RE/Cu钎焊接头能有效抑制电迁移现象的发生。在电加载条件下,随电流密度升高,Ni-GNSs增强Sn2.5Ag0.7Cu0.1RE/Cu接头阳极区界面金属间化合物(IMC)由起伏扇贝状转变为平坦厚大的板状,并出现了明显Cu3Sn;阴极区界面IMC由锯齿状转变为薄条状,且有明显空洞裂纹。钎焊接头断裂位置从阴极界面IMC/钎缝的过渡区向阴极界面IMC迁移,断裂方式由韧性断裂向脆性断裂转变,剪切强度明显下降。  相似文献   

10.
分别用3种润湿性测量方法(铺展面积测量法、润湿力测量法和润湿角测量法)做了不同松香浓度和不同助焊剂下的钎料Sn-37Pb的润湿性,以及在不同助焊剂下润湿性.通过对比分析发现,钎料Sn-37Pb的铺展面积和润湿力测量结果随着松香浓度的增加呈现出相近的趋势,有较好的一致性;在不同助焊剂的情况下,不同钎料的铺展面积和润湿力的测量结果较复杂,缺乏一致性.  相似文献   

11.
本文介绍了HJS型亚麻纺纱加湿剂的合成工艺,配方研究及应用性能。  相似文献   

12.
本文讨论了球形固体粒子(3)在两不互溶液体(液(1)、液(2))间不同程度浸润时系统的总界面Helmholtz自由能,根据界面热力学原理,得出了液(1)、液(2)、固之间三个界面张力各种可能情况下,粒子如何在两液相间分配。在三个界面张力能成平衡时,粒子的分配符合Young氏方程。绘制了以液(1)相中球形粒子的界面自由能为基准的相对界面自由能曲线图。  相似文献   

13.
本文用静滴法测定了TiC与45钢的润涅角。发现合金元素Mo、Ti均有改善其润涅性的作用,尤以钼的效果最为明显。  相似文献   

14.
室温下,利用直流对靶磁控溅射设备制备了Ag(x)/Fe(35nm)/Ag(x)系列薄膜,x=1,2,3,4nm.利用扫描探针显微镜(SPM)观测了样品的表面形貌及磁畴结构,应用X射线衍射仪(XRD)分析了样品的晶体结构,通过振动样品磁强计(VSM)测量了样品的磁特性.研究表明,非磁性Ag层厚度对Ag/Fe/Ag系列薄膜的微结构和磁特性有很大的影响.SPM观测显示,随Ag层厚度增加磁畴尺寸呈现先减小后增加的趋势.VSM结果显示,矫顽力的变化与磁畴尺寸的变化趋势是一致的,x=3nm时,垂直膜面矫顽力达到最大.  相似文献   

15.
超湿陷黄土及其湿陷特性   总被引:2,自引:0,他引:2  
提出了增湿历史的概念和前期湿陷含水量指标,指出增湿历史对湿陷变形有很大影响。研究了超湿陷黄土的湿陷规律,揭示出超湿陷黄土的滞后湿陷现象。最后给出了前期湿陷含水量的确定方法及其应用途径。  相似文献   

16.
本文利用Calvet型微量量热计研究了聚氨酯(PU)溶液—环三亚甲基三硝胺(RDX)晶体的润湿焓△Hi。指出PU能溶于四氢呋喃、二氧六环、吡啶和它们之中的任意二元混合溶液中。本实验特意设计了一种玻璃样品池。发现对RDX晶体而言,不同浓度的聚氨酯溶液,它们的润湿焓(△Hi)值是不同的。PU溶于四氢呋喃中的润湿焓(△Hi)值为最大;而溶于吡啶时则润湿焓(△Hi)值为最小。研究聚合物溶液—RDX晶体的润焓(△Hi)有利于研究RDX晶体的纯化机理。  相似文献   

17.
磁光记录介质非晶稀土-过渡金属合金TbFeCo薄膜覆盖Ag保护层可减小稀土元素的氧化且能增强其磁光克尔效应。利用直流磁控溅射法制备出Ag/TbFeCo/Si(100)磁光薄膜,利用可变入射角椭圆偏振光谱仪测量了其可见光区的光学常数,给出薄膜介电函数实部和虚部随入射光子能量的变化规律,同时把Ag/Si、Ag/TbFeCo/Si和TbFeCo/Si的光谱进行了比较。实验结果与经典的Drude模型相一致,而且Ag/TbFeCo/Si的光谱更接近Ag。不同厚度Ag/TbFeCo/Si薄膜其光学参数变化趋势相同,且随Ag厚度的增加变化幅度减小。  相似文献   

18.
Large-Scale Self-Assembled Ag Nanotubes   总被引:1,自引:0,他引:1  
A high yield of silver nanotubes with large aspect ratio were conveniently synthesized via an organic-assist solvothermal preparation technique using polyvinyl pyrrolidone (PVP) as a capping reagent and architecture soft-template. The molecular ratio between the repeating unit of PVP and AgNO3 plays a crucial role in determining the geometric shape of the product. Such novel-type Ag nanotubes were self-assembled by Ag nanoparticles, which had largely similar crystallographic orientation, forming a texture. The fact that nanoparticles without anisotropic crystal structures can form such superstructures by self-assembly may open a window for understanding a range of nanotube formation processes.  相似文献   

19.
为实现润湿图案化的超疏水表面在航空电子设备散热中的应用,本文对液滴撞击双疏水表面(具有疏水性图案的超疏水基质)的润湿行为和传热特性进行了分析.通过使用高速相机和红外相机,我们获取了液滴铺展和回退阶段的动力学以及表面温度和热流量的相应空间分布.本文研究了液滴撞击超疏水、疏水和双疏水表面上的动态润湿和局部传热的差异.此外,本文还分析了表面温度和撞击高度对液滴撞击过程的影响.结果表明,所有表面在铺展阶段都具有相同的润湿特性和相似的传热行为.表面温度变化并不能对铺展阶段表面润湿特性产生较大的影响,液滴铺展时间与表面温度和撞击高度无关.在回退阶段,表面润湿特性的差异使得三个表面之间的传热特性明显不同.双疏水表面特殊润湿特性使得回退阶段液膜的接触线速度存在跳变现象,形成了许多小液滴,增加了接触面积,同时又兼具了超疏水表面的回弹特性.  相似文献   

20.
基于弹性不稳定渗流过程的基本特征,考虑了土壤及水的压缩性影响,建立了单点源滴灌条件下渗流微分方程,根据数值计算方法可以模拟不同灌溉时间及滴头流量条件下土壤水头分布和润湿锋距离。计算结果表明:随着滴头流量的增大和灌溉时间的延长,土壤压降漏斗前缘不断向外扩展;在相同的滴头流量条件下,润湿锋距离增加的幅度随着灌溉时间的延长而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号