首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
应用MIDAS GTS NX软件建立采空区及覆岩三维数值模型,模拟煤矿开采及结束后采空区覆岩应力和位移分布,结合监测数据确定采空区地面场地的现状稳定性;然后在采空区地表施加拟建公路特大桥梁荷载,分析施加荷载后采空区覆岩的应力和位移变化,进一步分析采空区地面场地的稳定性,为在采空区地面的工程活动提供技术支持,降低工程建设成本。  相似文献   

2.
通过对岱庄煤矿4300采区工作面的顶板结构分析,得出了上部极近距离煤层开采后,下部煤层顶板形成极易漏冒的"块体-散体-梁"结构.采用数值模拟方法对下部工作面超前支承压力和上部采空区侧向支承压力共同作用下的高应力状态进行了模拟,结果表明,工作面前方煤体易失稳变形.针对工作面过采区前及采空区下开采易出现的顶板灾害事故,提出了工作面局部充填等相应的解决方案.  相似文献   

3.
通过对岱庄煤矿4300采区工作面的顸板结构分析,得出了上部极近距离煤层开采后,下部煤层顶板形成极易漏冒的“块体-散体-梁”结构。采用数值模拟方法对下部工作面超前支承压力和上部采空区侧向支承压力共同作牌下的高应力状态进行了模拟,结果袁明,工作面前方煤体易失稳变形。针对工作面过采区前及采空区下开采易出现的顶板灾害事故,提出了工作面局部充填等相应的解决方案。  相似文献   

4.
浅埋近距煤层采空区覆岩移动规律相似模拟   总被引:3,自引:0,他引:3  
浅埋近距煤层采空区坚硬顶板覆岩与煤柱破坏易导致动力灾害,同时会影响顶板涌水溃沙和地表沉降,为确保此类矿井的安全高效开采,结合冯家塔煤矿1402综采工作面实际,对该煤矿进行了煤柱破坏与覆岩移动规律的物理相似材料实验模拟研究,试验是以1-1采区的开采为模拟对象,模拟在工作面长度为270 m的单一走向长壁开采后,上覆岩层的移动和变形规律。研究结果表明:随着浅埋近距煤层采空区的增大与时间的推移,开采时大面积来压是由于保护煤柱逐渐被压垮引起覆岩大面积冒落,致使近距煤层之间采空区导通,垮落从直接顶开始,逐步扩散至地表,上覆岩层的运移以垂直为主,水平运移并不明显,形成梯形状下沉,上部煤层开采后其覆岩关键层破断块体结构的稳定性是影响下部煤层开采时工作面矿压显现强烈程度的重要因素。  相似文献   

5.
为了研究大倾角煤层多区段开采围岩运移规律,采用物理相似模拟实验方法,分析了大倾角煤层多区段采场顶板和煤柱变形破坏规律、底板应力分布及演化规律、垮落矸石充填特征等。结果表明:大倾角煤层多区段开采围岩运移规律不同于单区段开采,下区段采动导致上区段采场倾向中、上部垮落顶板出现二次下沉和滑移,顶板运移曲线呈现沿倾斜方向"上大下小"的双峰特点,垮落顶板非均匀充填导致采空区底板应力沿倾向呈现出中部下部上部,下区段采动导致上区段采空区中部底板应力显著增加。下区段开采致使区段煤柱上、下两侧非对称受载并发生破坏,引发了煤柱-上区段采场煤岩体的连锁运动;区段煤柱支承压力从上区段开采时的"W"型分布变为下区段开采时的"V"型分布,增载系数达到4.9.研究可为大倾角煤层多区段围岩控制提供了理论指导。  相似文献   

6.
为了探究急倾斜煤层开采形成的采空区对其上覆输气管道安全运行的影响,基于快速拉格朗日法对某煤层采空区进行数值模拟,探究了实际煤矿采空区的地质沉降和管道位移特征,研究了不同倾角、不同开采深度的急倾斜煤层对上覆输气管道变形的影响。结果表明:某煤矿区五个急倾斜煤层在开采100 m后,在煤层坡面上方形成最大深度1.54 m的塌陷,塌陷区内的土壤和岩石主要向煤层方向水平移动和垂直向下移动;靠近煤层采空区的管道,垂直方向位移大于水平方向位移,而远离煤层采空区管道,则水平位移较大;随着急倾斜煤层倾角减小和开采深度增大,管道向下的沉降量增大,并且发生最大沉降的位置逐渐向煤层方向靠近。  相似文献   

7.
小窑采空区地表易产生较大的裂缝、台阶和陷坑。为保证小窑采空区地表拟建的建构筑物安全,提出小窑采空区浅埋巷道上覆岩土的斜土钉加固法。提出验算浅埋巷道上覆和侧壁岩土稳定性的解析法。该解析法立足于太沙基拱理论,利用"等效内摩擦角"的概念,将土钉对上覆岩土的加固作用考虑进来,并认为侧壁岩土的稳定性决定小窑采空区的整体稳定性。分别采用解析法和有限元强度折减法分析小窑采空区的稳定安全系数,两种方法的结果相互印证。在安排解析计算与数值模拟中采用正交试验设计法。结果显示,所提出的加固方法显著提高了小窑采空区的稳定安全系数,减小了小窑采空区地基竖向位移和局部倾斜。先施加上部荷载后开挖巷道小窑采空区的稳定安全系数,显著大于先开挖巷道后施加上部荷载的稳定安全系数;先开挖巷道后施加上部荷载所造成的地基竖向位移和局部倾斜,显著大于先施加上部荷载后开挖巷道所造成的地基竖向位移和局部倾斜。本加固法为防治小窑采空区地质灾害提供一种有效、节约资源、安全的地基处理方法。  相似文献   

8.
王正帅 《科学技术与工程》2023,23(19):8133-8139
为了掌握急倾斜特厚煤层分段开采时工作面下部煤岩体应力及位移演化规律,采用数值模拟方法研究了工作面下部煤岩体和工作面底板的应力及位移分布,并分析了分段高度和开采深度对下部煤岩体应力及位移的影响。研究表明:上分段开采后,下部不同深度煤岩体卸压范围均呈长轴沿煤层走向的椭圆状,但卸压范围并不对称,底板侧和顶板侧的煤岩体卸压程度不同,靠近底板侧卸压程度更大。下部煤体卸压深度大小为底板侧>工作面中部>顶板侧。煤层底板不同深度出现不对称卸压区,靠近回采分段上端部的煤层底板处垂直应力明显集中。急倾斜煤层分段开采,段高对下部煤体的卸压深度范围影响较小。开采深度不同时,随着埋深增加,工作面下部煤岩体应力集中区域增大,下部同一深度煤体的垂直应力、垂直位移均出现明显增加,开采深度对工作面下部煤岩体的卸压范围影响明显,埋深越大卸压范围也越大。  相似文献   

9.
为了明确大倾角煤层走向长壁开采顶板结构时空演化规律,采用物理相似模拟、数值模拟、现场实测综合互馈的研究手段,对采空区矸石的非均匀充填特征、顶板结构空间展布形态、围岩主应力大小渐变与方向偏转的演化过程和支架工作阻力的区域性特征进行研究。结果表明:随着推进距离的不断增大,底板上矸石堆积范围增大,在支架后方采空区开始往复出现倒三角的临空面;在深部采空区,矸石堆砌与水平面之间夹角沿倾向下部至上部不断减小;顶板位移呈现出“增大-稳定”的演化趋势,峰值位置由工作面倾向中上部区域向倾向中部迁移;顶板应力传递拱壳呈典型的非对称分布特征,拱壳内部岩体受力状态由双向受压转为单、双向受拉,主应力方向由x轴正向转为负向;顶板变形破坏的非对称性使得工作面支架工作阻力呈现倾向中上部较大、离散程度高,倾向中下部较小、离散程度低的区域特征。研究结果可为大倾角煤层长壁采场顶板稳定性控制提供一定的参考与指导意义。  相似文献   

10.
为研究房柱采空区煤房煤柱交替分布对下位近距离煤层顶板应力分布影响规律,采用数值模拟方法对大地精矿房柱采空区下应力分布特征进行研究,研究表明:房柱采空区底板岩层中应力从无煤柱区到房柱采空区下方区域应力分布依次为端煤影响应力增高区、端煤影响应力降低区和采空区煤柱影响稳定区;根据采空区煤柱影响稳定区下底板应力波动范围确定了模拟地层采空区煤柱集中应力工程影响深度,影响深度范围外煤层开采工作面顶板压力及超前支承压力分布受上部煤柱集中应力影响较小,范围内煤层开采工作面顶板压力及超前支承压力分布受上部煤柱集中应力影响剧烈。研究结果对于类似条件的煤层开采及时采取有效顶板控制措施具有实际意义。  相似文献   

11.
为了全面研究大倾角煤层开采上覆岩层垮落特征和围岩应力分布规律,运用相似材料模拟新庄孜矿大倾角综采工作面的开采,研究开采后大倾角工作面上覆岩层移动规律及应力变化特征.随着工作面的推进,岩层裂隙自下而上发展,顶板不断冒落,形成初次来压和周期来压;冒落的岩层有垂直位移且沿层理下滑,使得采空区上部垮落高度比下部大,工作面下部的初次和周期垮落步距比上部小.覆岩的冒落拱呈不对称性,边界向采空区上部偏移,呈上虚下实的状态.模拟实验为大倾角煤层综采技术的应用和推广提供了理论依据.  相似文献   

12.
针对充填开采成本较高、条带开采煤炭采出率较低等问题,根据某矿的地质资料,运用FLAC3D软件模拟交错式充填法和垮落法开采过程中上覆岩层的应力分布、垂直位移变化情况.结果表明:当采高为1 m、煤层距地表178.8 m时,垮落法开采的采空区中部出现0~4.1 MPa的拉应力;交错式充填的采空区上部压应力为2.0 ~3.0 MPa,采空区充填区域压应力为3.0 ~4.0 MPa,应力均小于原岩应力.垮落法采空区中部上覆岩层位移最大,向两侧逐渐减小;交错式充填采空区上覆岩层的位移较小,最大下沉量为0.006 m.在降低充填成本的情况下,交错式充填法能够有效控制采空区上覆岩层应力分布和下沉量,为“三下”采煤提供理论依据.  相似文献   

13.
淮北市拟在煤矿采空区上兴建居住区,由于受煤层开采的影响,拟建地区地表均产生过大面积沉降,形成大范围塌陷区。在采空区上修筑建筑物的关键问题是对采空区建筑地基的稳定性评价问题。为保证该建设项目的质量和安全,需要分析采空区的稳定性及对该场地进行采空区地基稳定性评价,进而确定新建建筑物的可行性,为拟建工程提供科学的设计依据。  相似文献   

14.
双层空区开挖顶板稳定性的FLAC3D数值分析   总被引:6,自引:1,他引:5  
利用FLAC3D软件建立双层空区数值计算模型,根据厚度折减理论分析开挖后空区的安全顶板厚度和应力、变形、塑性区的分布情况,得到:安全顶板厚度与空区跨度之间符合线性关系;当跨度较小时,上部空区处于压应力状态,下部空区处于拉应力状态,最大拉应力随跨度的增大而增大:当系统达到临界状态时,上、下空区顶板的竖直位移最大,上空区的大位移区域面积明显大于下空区的大位移区域面积;空区对整体位移存在一定影响,如水平方向对整体位移的影响范围大致为跨度的1.5倍,且两空区之间存在相互作用,在大位移区域两空区显示出相互接近的趋势;当跨度较小时,上部空区项板主要发生剪切破坏,下部空区两侧帮发生拉剪破坏,随着跨度的增大,此范围破坏形式转变为冲切破坏,整体塑性区面积明显增大,下部空区顶板塑性区逐渐发展,并延伸至上空区.  相似文献   

15.
大倾角煤层开采后,受采空区冒落矸石下滑充填的影响,特别是工作面中部煤层变薄带的影响,工作面顶板岩层的变形、破坏和运动形式不同于其他煤层。以长沟峪大倾角煤层变薄带顶板压力观测数据为基础,结合计算机模拟方法,分析该煤层顶板压力特点。数值模拟与实测分析均显示工作面煤层变薄带下部顶板压力大。这为相近条件下采煤工作面顶板支护设计提供了技术指导。  相似文献   

16.
当地下的煤层在开采出来之后,其采空区的顶板在地心重力的作用下会与顶板上方的覆岩及土体向层理面法线方面缓慢移动,当地下工作面不断推进之后,采空区的顶板岩层端部会逐渐出现开裂的情况,其在岩层中部开裂区域较小的条件-F,会出现顶板岩层整体垮落的情况,该文基于实际,就煤矿开采引发的地表变形动态测量的方法做出探究,望给有关人士参考.  相似文献   

17.
贾会会 《科技信息》2012,(10):396-397
采空区上部进行爆破作业时,爆炸应力波产生的水平爆破波将会对采空区顶板及其围岩形成动力加载,采空区顶板及其围岩将会出现累积破坏。当这种累积破坏积累到一定程度时,将导致顶板突发性冒落和塌陷,对采空区上方作业人员和采掘设备构成潜在安全隐患。基于现场实测的水平爆破波速度时程曲线,构建FLAC3D三维数值计算模型,考虑在机械施工设备荷载的影响下对采空区顶板施加水平爆破荷载,揭示水平爆破波作用下的采空区顶板和采空区围岩损伤破坏区域的发展、应力集中程度变化情况,并通过监测点位移变化曲线,揭示了在水平爆破波反复作用下,采空区顶板及采空区围岩的动态变形响应特征和渐进位移累积效应。为保障类似工程的安全施工,提供了理论基础和技术依据。  相似文献   

18.
针对某缓倾斜多煤层复杂的采矿地质条件,运用有限元软件进行三维数值计算分析,建立三维地质概化模型时考虑了断层的影响,对不同开采条件所引起的煤层顶板岩体移动和地表沉陷进行了数值计算.得到不同开采条件下地表、煤层顶板基准点的下沉移动分布曲线,煤层顶板基准点的最大、最小沉降、沉降差,以及煤层开采后顶板的主应力、剪应力值.研究结果表明:同时回采3101、3102工作面和错时开采3101或3102工作面引起的地面最大沉降和沉降差均变化不大,分别为520 mm、498 mm、515 mm及59 mm、78 mm、81 mm.该矿开采区域缓倾斜煤层引起的地表变形状况提供定量依据,为缓倾斜煤层以及类似条件下中小矿山合理、安全、经济的开发提供参考.  相似文献   

19.
为研究列车动载荷对采空区稳定性的影响.概化运行列车和采空区顶板力学模型,分析采空区顶板在以一定速度运动的常力作用下的运动方程,用移动的恒定载荷模拟理想情况下运行列车对采空区顶板及地表的作用过程,进行动力有限元分析.结果表明:与不受外部载荷影响条件下相比,在列车动载荷作用下,地表最大竖向位移和煤柱所承受的最大压应力都有大幅增加,并随着列车的前行最大值逐渐增大,且相应向前移动,列车运行到采空区中部达到最大,然后随着列车的前行最大值开始逐渐减小.  相似文献   

20.
采空区建筑物地基稳定性影响因素分析   总被引:1,自引:1,他引:1  
针对处于相对平衡状态的废弃采空区上覆围岩重新"活化",使裂隙带岩体再压密、地下残留空隙再冒落,导致地表产生二次移动和变形的问题,通过对采空区建筑物地基稳定性综合评价,得出主要考虑煤层的客观因素和外界扰动因素两方面是导致地表产生二次移动和变形的主要原因。从客观因素中煤层赋存条件中的煤层埋深、煤层厚度、煤层倾角、松散层厚度入手,采用FLAC3D软件对煤层埋深、煤层厚度、煤层倾角、松散层厚度等因素对采空区建筑物稳定性进行分析,结果表明:随着开采深度的增加,地表及地表附近岩层的移动变形受开采的影响减弱,开采深度的增加对建筑物地基的稳定有利;随着开采厚度的增加,开采对上覆岩层的破坏程度明显增大,移动过程表现得也越剧烈,地表移动变形值也越大,开采厚度的加大对废弃采空区建筑物地基的稳定不利;煤层倾角的增大增加了地表移动的时间,增大了地表的不稳定性;松散层在覆岩中所占的比例越大,地表的移动范围就相对越大,增大了地表的不稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号