首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells   总被引:1,自引:0,他引:1  
Kawamura Y  Saito K  Kin T  Ono Y  Asai K  Sunohara T  Okada TN  Siomi MC  Siomi H 《Nature》2008,453(7196):793-797
  相似文献   

3.
Park JE  Heo I  Tian Y  Simanshu DK  Chang H  Jee D  Patel DJ  Kim VN 《Nature》2011,475(7355):201-205
A hallmark of RNA silencing is a class of approximately 22-nucleotide RNAs that are processed from double-stranded RNA precursors by Dicer. Accurate processing by Dicer is crucial for the functionality of microRNAs (miRNAs). The current model posits that Dicer selects cleavage sites by measuring a set distance from the 3' overhang of the double-stranded RNA terminus. Here we report that human Dicer anchors not only the 3' end but also the 5' end, with the cleavage site determined mainly by the distance (~22 nucleotides) from the 5' end (5' counting rule). This cleavage requires a 5'-terminal phosphate group. Further, we identify a novel basic motif (5' pocket) in human Dicer that recognizes the 5'-phosphorylated end. The 5' counting rule and the 5' anchoring residues are conserved in Drosophila Dicer-1, but not in Giardia Dicer. Mutations in the 5' pocket reduce processing efficiency and alter cleavage sites in vitro. Consistently, miRNA biogenesis is perturbed in vivo when Dicer-null embryonic stem cells are replenished with the 5'-pocket mutant. Thus, 5'-end recognition by Dicer is important for precise and effective biogenesis of miRNAs. Insights from this study should also afford practical benefits to the design of small hairpin RNAs.  相似文献   

4.
5.
6.
Ma Y  Creanga A  Lum L  Beachy PA 《Nature》2006,443(7109):359-363
RNA interference (RNAi) in both plants and animals is mediated by small RNAs of approximately 21-23 nucleotides in length for regulation of target gene expression at multiple levels through partial sequence complementarities. Combined with widespread genome sequencing, experimental use of RNAi has the potential to interrogate systematically all genes in a given organism with respect to a particular function. However, owing to a tolerance for mismatches and gaps in base-pairing with targets, small RNAs could have up to hundreds of potential target sequences in a genome, and some small RNAs in mammalian systems have been shown to affect the levels of many messenger RNAs besides their intended targets. The use of long double-stranded RNAs (dsRNAs) in Drosophila, where Dicer-mediated processing produces small RNAs inside cells, has been thought to reduce the probability of such 'off-target effects' (OTEs). Here we show, however, that OTEs mediated by short homology stretches within long dsRNAs are prevalent in Drosophila. We have performed a genome-wide RNAi screen for novel components of Wingless (Wg) signal transduction in Drosophila S2R + cells, and found few, if any, legitimate candidates. Rather, many of the top candidates exert their effects on Wg response through OTEs on known pathway components or through promiscuous OTEs produced by tandem trinucleotide repeats present in many dsRNAs and genes. Genes containing such repeats are over-represented in candidate lists from published screens, suggesting that they represent a common class of false positives. Our results suggest simple measures to improve the reliability of genome-wide RNAi screens in Drosophila and other organisms.  相似文献   

7.
Recognition of small interfering RNA by a viral suppressor of RNA silencing   总被引:1,自引:0,他引:1  
Ye K  Malinina L  Patel DJ 《Nature》2003,426(6968):874-878
RNA silencing (also known as RNA interference) is a conserved biological response to double-stranded RNA that regulates gene expression, and has evolved in plants as a defence against viruses. The response is mediated by small interfering RNAs (siRNAs), which guide the sequence-specific degradation of cognate messenger RNAs. As a counter-defence, many viruses encode proteins that specifically inhibit the silencing machinery. The p19 protein from the tombusvirus is such a viral suppressor of RNA silencing and has been shown to bind specifically to siRNA. Here, we report the 1.85-A crystal structure of p19 bound to a 21-nucleotide siRNA, where the 19-base-pair RNA duplex is cradled within the concave face of a continuous eight-stranded beta-sheet, formed across the p19 homodimer interface. Direct and water-mediated intermolecular contacts are restricted to the backbone phosphates and sugar 2'-OH groups, consistent with sequence-independent p19-siRNA recognition. Two alpha-helical 'reading heads' project from opposite ends of the p19 homodimer and position pairs of tryptophans for stacking over the terminal base pairs, thereby measuring and bracketing both ends of the siRNA duplex. Our structure provides an illustration of siRNA sequestering by a viral protein.  相似文献   

8.
9.
Elbashir SM  Harborth J  Lendeckel W  Yalcin A  Weber K  Tuschl T 《Nature》2001,411(6836):494-498
  相似文献   

10.
RNA interference (RNAi) regulates gene expression by the cleavage of messenger RNA, by mRNA degradation and by preventing protein synthesis. These effects are mediated by a ribonucleoprotein complex known as RISC (RNA-induced silencing complex). We have previously identified four Drosophila components (short interfering RNAs, Argonaute 2 (ref. 2), VIG and FXR) of a RISC enzyme that degrades specific mRNAs in response to a double-stranded-RNA trigger. Here we show that Tudor-SN (tudor staphylococcal nuclease)--a protein containing five staphylococcal/micrococcal nuclease domains and a tudor domain--is a component of the RISC enzyme in Caenorhabditis elegans, Drosophila and mammals. Although Tudor-SN contains non-canonical active-site sequences, we show that purified Tudor-SN exhibits nuclease activity similar to that of other staphylococcal nucleases. Notably, both purified Tudor-SN and RISC are inhibited by a specific competitive inhibitor of micrococcal nuclease. Tudor-SN is the first RISC subunit to be identified that contains a recognizable nuclease domain, and could therefore contribute to the RNA degradation observed in RNAi.  相似文献   

11.
RNA interference in adult mice   总被引:203,自引:0,他引:203  
McCaffrey AP  Meuse L  Pham TT  Conklin DS  Hannon GJ  Kay MA 《Nature》2002,418(6893):38-39
RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.  相似文献   

12.
Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain   总被引:3,自引:0,他引:3  
Lingel A  Simon B  Izaurralde E  Sattler M 《Nature》2003,426(6965):465-469
RNA interference is a conserved mechanism that regulates gene expression in response to the presence of double-stranded (ds)RNAs. The RNase III-like enzyme Dicer first cleaves dsRNA into 21-23-nucleotide small interfering RNAs (siRNAs). In the effector step, the multimeric RNA-induced silencing complex (RISC) identifies messenger RNAs homologous to the siRNAs and promotes their degradation. The Argonaute 2 protein (Ago2) is a critical component of RISC. Both Argonaute and Dicer family proteins contain a common PAZ domain whose function is unknown. Here we present the three-dimensional nuclear magnetic resonance structure of the Drosophila melanogaster Ago2 PAZ domain. This domain adopts a nucleic-acid-binding fold that is stabilized by conserved hydrophobic residues. The nucleic-acid-binding patch is located in a cleft between the surface of a central beta-barrel and a conserved module comprising strands beta3, beta4 and helix alpha3. Because critical structural residues and the binding surface are conserved, we suggest that PAZ domains in all members of the Argonaute and Dicer families adopt a similar fold with nucleic-acid binding function, and that this plays an important part in gene silencing.  相似文献   

13.
14.
RNA干涉是近年来的研究热点,广泛参与生物发育、细胞分化、细胞凋亡等多种生物学过程。本文综述了近年来对转录后靶基因调控的几种小RNA:siRNA、microRNA、piRNA和endo-siRNA,从特点、生物发生过程和生物学功能方面进行了综述性地比较,以期为进一步深入研究提供参考。  相似文献   

15.
Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm.   总被引:118,自引:0,他引:118  
S Pi?ol-Roma  G Dreyfuss 《Nature》1992,355(6362):730-732
  相似文献   

16.
Hammond SM  Bernstein E  Beach D  Hannon GJ 《Nature》2000,404(6775):293-296
  相似文献   

17.
A pancreatic islet-specific microRNA regulates insulin secretion   总被引:4,自引:0,他引:4  
MicroRNAs (miRNAs) constitute a growing class of non-coding RNAs that are thought to regulate gene expression by translational repression. Several miRNAs in animals exhibit tissue-specific or developmental-stage-specific expression, indicating that they could play important roles in many biological processes. To study the role of miRNAs in pancreatic endocrine cells we cloned and identified a novel, evolutionarily conserved and islet-specific miRNA (miR-375). Here we show that overexpression of miR-375 suppressed glucose-induced insulin secretion, and conversely, inhibition of endogenous miR-375 function enhanced insulin secretion. The mechanism by which secretion is modified by miR-375 is independent of changes in glucose metabolism or intracellular Ca2+-signalling but correlated with a direct effect on insulin exocytosis. Myotrophin (Mtpn) was predicted to be and validated as a target of miR-375. Inhibition of Mtpn by small interfering (si)RNA mimicked the effects of miR-375 on glucose-stimulated insulin secretion and exocytosis. Thus, miR-375 is a regulator of insulin secretion and may thereby constitute a novel pharmacological target for the treatment of diabetes.  相似文献   

18.
Kennedy S  Wang D  Ruvkun G 《Nature》2004,427(6975):645-649
In many organisms, introducing double-stranded RNA (dsRNA) causes the degradation of messenger RNA that is homologous to the trigger dsRNA--a process known as RNA interference. The dsRNA is cleaved into short interfering RNAs (siRNAs), which hybridize to homologous mRNAs and induce their degradation. dsRNAs vary in their ability to trigger RNA interference: many mRNA-targeting dsRNAs show weak phenotypes, and nearly all mRNAs of the Caenorhabditis elegans nervous system are refractory to RNA interference. C. elegans eri-1 was identified in a genetic screen for mutants with enhanced sensitivity to dsRNAs. Here we show that eri-1 encodes an evolutionarily conserved protein with domains homologous to nucleic-acid-binding and exonuclease proteins. After exposure to dsRNA or siRNAs, animals with eri-1 mutations accumulate more siRNAs than do wild-type animals. C. elegans ERI-1 and its human orthologue degrade siRNAs in vitro. In the nematode worm, ERI-1 is predominantly cytoplasmic and is expressed most highly in the gonad and a subset of neurons, suggesting that ERI-1 siRNase activity suppresses RNA interference more intensely in these tissues. Thus, ERI-1 is a negative regulator that may normally function to limit the duration, cell-type specificity or endogenous functions of RNA interference.  相似文献   

19.
Qi Y  He X  Wang XJ  Kohany O  Jurka J  Hannon GJ 《Nature》2006,443(7114):1008-1012
  相似文献   

20.
MicroRNA silencing through RISC recruitment of eIF6   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号