首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hartnup disorder, an autosomal recessive defect named after an English family described in 1956 (ref. 1), results from impaired transport of neutral amino acids across epithelial cells in renal proximal tubules and intestinal mucosa. Symptoms include transient manifestations of pellagra (rashes), cerebellar ataxia and psychosis. Using homozygosity mapping in the original family in whom Hartnup disorder was discovered, we confirmed that the critical region for one causative gene was located on chromosome 5p15 (ref. 3). This region is homologous to the area of mouse chromosome 13 that encodes the sodium-dependent amino acid transporter B(0)AT1 (ref. 4). We isolated the human homolog of B(0)AT1, called SLC6A19, and determined its size and molecular organization. We then identified mutations in SLC6A19 in members of the original family in whom Hartnup disorder was discovered and of three Japanese families. The protein product of SLC6A19, the Hartnup transporter, is expressed primarily in intestine and renal proximal tubule and functions as a neutral amino acid transporter.  相似文献   

2.
Lysinuric protein intolerance (LPI; OMIM 222700) is a rare, recessive disorder with a worldwide distribution, but with a high prevalence in the Finnish population; symptoms include failure to thrive, growth retardation, muscle hypotonia and hepatosplenomegaly. A defect in the plasma membrane transport of dibasic amino acids has been demonstrated at the baso-lateral membrane of epithelial cells in small intestine and in renal tubules and in plasma membrane of cultured skin fibroblasts from LPI patients. The gene causing LPI has been assigned by linkage analysis to 14q11-13. Here we report mutations in SLC7A7 cDNA (encoding y+L amino acid transporter-1, y+LAT-1), which expresses dibasic amino-acid transport activity and is located in the LPI region, in 31 Finnish LPI patients and 1 Spanish patient. The Finnish patients are homozygous for a founder missense mutation leading to a premature stop codon. The Spanish patient is a compound heterozygote with a missense mutation in one allele and a frameshift mutation in the other. The frameshift mutation generates a premature stop codon, eliminating the last one-third of the protein. The missense mutation abolishes y+LAT-1 amino-acid transport activity when co-expressed with the heavy chain of the cell-surface antigen 4F2 (4F2hc, also known as CD98) in Xenopus laevis oocytes. Our data establish that mutations in SLC7A7 cause LPI.  相似文献   

3.
Neurodegenerative disorders with high brain iron include Parkinson disease, Alzheimer disease and several childhood genetic disorders categorized as neuroaxonal dystrophies. We mapped a locus for infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation (NBIA) to chromosome 22q12-q13 and identified mutations in PLA2G6, encoding a calcium-independent group VI phospholipase A2, in NBIA, INAD and the related Karak syndrome. This discovery implicates phospholipases in the pathogenesis of neurodegenerative disorders with iron dyshomeostasis.  相似文献   

4.
5.
Hartnup disorder (OMIM 234500) is an autosomal recessive abnormality of renal and gastrointestinal neutral amino acid transport noted for its clinical variability. We localized a gene causing Hartnup disorder to chromosome 5p15.33 and cloned a new gene, SLC6A19, in this region. SLC6A19 is a sodium-dependent and chloride-independent neutral amino acid transporter, expressed predominately in kidney and intestine, with properties of system B(0). We identified six mutations in SLC6A19 that cosegregated with disease in the predicted recessive manner, with most affected individuals being compound heterozygotes. The disease-causing mutations that we tested reduced neutral amino acid transport function in vitro. Population frequencies for the most common mutated SLC6A19 alleles are 0.007 for 517G --> A and 0.001 for 718C --> T. Our findings indicate that SLC6A19 is the long-sought gene that is mutated in Hartnup disorder; its identification provides the opportunity to examine the inconsistent multisystemic features of this disorder.  相似文献   

6.
7.
8.
Specialized collagens and small leucine-rich proteoglycans (SLRPs) interact to produce the transparent corneal structure. In cornea plana, the forward convex curvature is flattened, leading to a decrease in refraction. A more severe, recessively inherited form (CNA2; MIM 217300) and a milder, dominantly inherited form (CNA1; MIM 121400) exist. CNA2 is a rare disorder with a worldwide distribution, but a high prevalence in the Finnish population. The gene mutated in CNA2 was assigned by linkage analysis to 12q (refs 4, 5), where there is a cluster of several SLRP genes. We cloned two additional SLRP genes highly expressed in cornea: KERA (encoding keratocan) in 12q and OGN (encoding osteoglycin) in 9q. Here we report mutations in KERA in 47 CNA2 patients: 46 Finnish patients are homozygous for a founder missense mutation, leading to the substitution of a highly conserved amino acid; and one American patient is homozygous for a mutation leading to a premature stop codon that truncates the KERA protein. Our data establish that mutations in KERA cause CNA2. CNA1 patients had no mutations in these proteoglycan genes.  相似文献   

9.
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.  相似文献   

10.
Mucolipidosis type IV (MLIV) is an autosomal recessive, neurodegenerative, lysosomal storage disorder characterized by psychomotor retardation and ophthalmological abnormalities including corneal opacities, retinal degeneration and strabismus. Most patients reach a maximal developmental level of 12?15 months. The disease was classified as a mucolipidosis following observations by electron microscopy indicating the lysosomal storage of lipids together with water-soluble, granulated substances. Over 80% of the MLIV patients diagnosed are Ashkenazi Jews, including severely affected and mildly affected patients. The gene causing MLIV was previously mapped to human chromosome 19p13.2-13.3 in a region of approximately 1 cM (ref. 7). Haplotype analysis in the MLIV gene region of over 70 MLIV Ashkenazi chromosomes indicated the existence of two founder chromosomes among 95% of the Ashkenazi MLIV families: a major haplotype in 72% and a minor haplotype in 23% of the MLIV chromosomes (ref. 7, and G.B., unpublished data). The remaining 5% are distinct haplotypes found only in single patients. The basic metabolic defect causing the lysosomal storage in MLIV has not yet been identified. Thus, positional cloning was an alternative to identify the MLIV gene. We report here the identification of a new gene in this human chromosomal region in which MLIV-specific mutations were identified.  相似文献   

11.
Nephronophthisis (NPHP), a group of autosomal recessive cystic kidney disorders, is the most common genetic cause of progressive renal failure in children and young adults. NPHP may be associated with Leber congenital amaurosis, tapeto-retinal degeneration, cerebellar ataxia, cone-shaped epiphyses, congenital oculomotor apraxia and hepatic fibrosis. Loci associated with an infantile type of NPHP on 9q22-q31 (NPHP2), juvenile types of NPHP on chromosomes 2q12-q13 (NPHP1) and 1p36 (NPHP4) and an adolescent type of NPHP on 3q21-q22 (NPHP3) have been mapped. NPHP1 and NPHP4 have been identified, and interaction of the respective encoded proteins nephrocystin and nephrocystin-4 has been shown. Here we report the identification of NPHP3, encoding a novel 1,330-amino acid protein that interacts with nephrocystin. We describe mutations in NPHP3 in families with isolated NPHP and in families with NPHP with associated hepatic fibrosis or tapeto-retinal degeneration. We show that the mouse ortholog Nphp3 is expressed in the node, kidney tubules, retina, respiratory epithelium, liver, biliary tract and neural tissues. In addition, we show that a homozygous missense mutation in Nphp3 is probably responsible for the polycystic kidney disease (pcy) mouse phenotype. Interventional studies in the pcy mouse have shown beneficial effects by modification of protein intake and administration of methylprednisolone, suggesting therapeutic strategies for treating individuals with NPHP3.  相似文献   

12.
Uric acid is the end product of purine metabolism in humans and great apes, which have lost hepatic uricase activity, leading to uniquely high serum uric acid concentrations (200-500 microM) compared with other mammals (3-120 microM). About 70% of daily urate disposal occurs via the kidneys, and in 5-25% of the human population, impaired renal excretion leads to hyperuricemia. About 10% of people with hyperuricemia develop gout, an inflammatory arthritis that results from deposition of monosodium urate crystals in the joint. We have identified genetic variants within a transporter gene, SLC2A9, that explain 1.7-5.3% of the variance in serum uric acid concentrations, following a genome-wide association scan in a Croatian population sample. SLC2A9 variants were also associated with low fractional excretion of uric acid and/or gout in UK, Croatian and German population samples. SLC2A9 is a known fructose transporter, and we now show that it has strong uric acid transport activity in Xenopus laevis oocytes.  相似文献   

13.
Neutral lipid storage disease comprises a heterogeneous group of autosomal recessive disorders characterized by systemic accumulation of triglycerides in cytoplasmic droplets. Here we report a neutral lipid storage disease subgroup characterized by mild myopathy, absence of ichthyosis and mutations in both alleles of adipose triglyceride lipase (PNPLA2, also known as ATGL). Three of these mutations are predicted to lead to a truncated ATGL protein with an intact patatin domain containing the active site, but with defects in the hydrophobic domain. The block in triglyceride degradation was mimicked by short interfering RNA directed against ATGL. NLSDM is distinct from Chanarin-Dorfman syndrome, which is characterized by neutral lipid storage disease with ichthyosis, mild myopathy and hepatomegaly due to mutations in ABHD5 (also known as CGI-58).  相似文献   

14.
Megaloblastic anaemia 1 (MGA1, OMIM 261100) is a rare, autosomal recessive disorder characterized by juvenile megaloblastic anaemia, as well as neurological symptoms that may be the only manifestations. At the cellular level, MGA1 is characterized by selective intestinal vitamin B12 (B12, cobalamin) malabsorption. MGA1 occurs worldwide, but its prevalence is higher in several Middle Eastern countries and Norway, and highest in Finland (0.8/100,000). We previously mapped the MGA1 locus by linkage analysis in Finnish and Norwegian families to a 6-cM region on chromosome 10p12.1 (ref. 8). A functional candidate gene encoding the intrinsic factor (IF)-B12 receptor, cubilin, was recently cloned; the human homologue, CUBN, was mapped to the same region. We have now refined the MGA1 region by linkage disequilibrium (LD) mapping, fine-mapped CUBN and identified two independent disease-specific CUBN mutations in 17 Finnish MGA1 families. Our genetic and molecular data indicate that mutations in CUBN cause MGA1.  相似文献   

15.
RNA exosomes are multi-subunit complexes conserved throughout evolution and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596). We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.  相似文献   

16.
Peripheral neuropathy associated with agenesis of the corpus callosum (ACCPN) is a severe sensorimotor neuropathy associated with mental retardation, dysmorphic features and complete or partial agenesis of the corpus callosum. ACCPN is transmitted in an autosomal recessive fashion and is found at a high frequency in the province of Quebec, Canada. ACCPN has been previously mapped to chromosome 15q. The gene SLC12A6 (solute carrier family 12, member 6), which encodes the K+-Cl- transporter KCC3 and maps within the ACCPN candidate region, was screened for mutations in individuals with ACCPN. Four distinct protein-truncating mutations were found: two in the French Canadian population and two in non-French Canadian families. The functional consequence of the predominant French Canadian mutation (2436delG, Thr813fsX813) was examined by heterologous expression of wildtype and mutant KCC3 in Xenopus laevis oocytes; the truncated mutant is appropriately glycosylated and expressed at the cellular membrane, where it is non-functional. Mice generated with a targeted deletion of Slc12a6 have a locomotor deficit, peripheral neuropathy and a sensorimotor gating deficit, similar to the human disease. Our findings identify mutations in SLC12A6 as the genetic lesion underlying ACCPN and suggest a critical role for SLC12A6 in the development and maintenance of the nervous system.  相似文献   

17.
Loss of the human mucolipin-1 gene underlies mucolipidosis type IV (MLIV), a lysosomal storage disease that results in severe developmental neuropathology. Unlike other lysosomal storage diseases, MLIV is not associated with a lack of lysosomal hydrolases; instead, MLIV cells display abnormal endocytosis of lipids and accumulate large vesicles, indicating that a defect in endocytosis may underlie the disease. Here we report the identification of a loss-of-function mutation in the Caenorhabditis elegans mucolipin-1 homolog, cup-5, and show that this mutation results in an enhanced rate of uptake of fluid-phase markers, decreased degradation of endocytosed protein and accumulation of large vacuoles. Overexpression of cup-5(+) causes the opposite phenotype, indicating that cup-5 activity controls aspects of endocytosis. Studies in model organisms such as C. elegans have helped illuminate fundamental mechanisms involved in normal cellular function and human disease; thus the C. elegans cup-5 mutant may be a useful model for studying conserved aspects of mucolipin-1 structure and function and for assessing the effects of potential therapeutic compounds.  相似文献   

18.
LMNA, encoding lamin A/C, is mutated in partial lipodystrophy   总被引:23,自引:0,他引:23  
The lipodystrophies are a group of disorders characterized by the absence or reduction of subcutaneous adipose tissue. Partial lipodystrophy (PLD; MIM 151660) is an inherited condition in which a regional (trunk and limbs) loss of fat occurs during the peri-pubertal phase. Additionally, variable degrees of resistance to insulin action, together with a hyperlipidaemic state, may occur and simulate the metabolic features commonly associated with predisposition to atherosclerotic disease. The PLD locus has been mapped to chromosome 1q with no evidence of genetic heterogeneity. We, and others, have refined the location to a 5.3-cM interval between markers D1S305 and D1S1600 (refs 5, 6). Through a positional cloning approach we have identified five different missense mutations in LMNA among ten kindreds and three individuals with PLD. The protein product of LMNA is lamin A/C, which is a component of the nuclear envelope. Heterozygous mutations in LMNA have recently been identified in kindreds with the variant form of muscular dystrophy (MD) known as autosomal dominant Emery-Dreifuss MD (EDMD-AD; ref. 7) and dilated cardiomyopathy and conduction-system disease (CMD1A). As LMNA is ubiquitously expressed, the finding of site-specific amino acid substitutions in PLD, EDMD-AD and CMD1A reveals distinct functional domains of the lamin A/C protein required for the maintenance and integrity of different cell types.  相似文献   

19.
Joubert syndrome-related disorders (JSRD) are a group of syndromes sharing the neuroradiological features of cerebellar vermis hypoplasia and a peculiar brainstem malformation known as the 'molar tooth sign'. We identified mutations in the CEP290 gene in five families with variable neurological, retinal and renal manifestations. CEP290 expression was detected mostly in proliferating cerebellar granule neuron populations and showed centrosome and ciliary localization, linking JSRDs to other human ciliopathies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号