首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the new A (H1N1) influenza virus recently emerging in North America is a hot controversial topic of significance in disease control and risk assessment. Some experts claimed that it was an unusually mongrelized mix of human, avian and swine influenza viruses, while some others concluded that it was totally a simple re-assortment hybrid of two lineages of swine influenza viruses. Here the phylogenetic diversity of the viral PB1, PA and PB2 gene sequences using online web servers, and the results suggest that all the 8 genetic segments of the new virus were possibly from two lineages of swine influenza viruses, and one of the lineage was a mongrelized mix of human, avian and swine influenza viruses emerging in the world approximately 10 years ago. Considering the recent epidemiological trends of the new virus, we believe it will spread more widely in the world and persist long in human populations. It also could spread among swine populations. The future wide spreading of the new virus may coincide the disappearance of a subtype of previous human influenza A virus.  相似文献   

2.
Investigation of the human antibody response to influenza virus infection has been largely limited to serology, with relatively little analysis at the molecular level. The 1918 H1N1 influenza virus pandemic was the most severe of the modern era. Recent work has recovered the gene sequences of this unusual strain, so that the 1918 pandemic virus could be reconstituted to display its unique virulence phenotypes. However, little is known about adaptive immunity to this virus. We took advantage of the 1918 virus sequencing and the resultant production of recombinant 1918 haemagglutinin (HA) protein antigen to characterize at the clonal level neutralizing antibodies induced by natural exposure of survivors to the 1918 pandemic virus. Here we show that of the 32 individuals tested that were born in or before 1915, each showed seroreactivity with the 1918 virus, nearly 90 years after the pandemic. Seven of the eight donor samples tested had circulating B cells that secreted antibodies that bound the 1918 HA. We isolated B cells from subjects and generated five monoclonal antibodies that showed potent neutralizing activity against 1918 virus from three separate donors. These antibodies also cross-reacted with the genetically similar HA of a 1930 swine H1N1 influenza strain, but did not cross-react with HAs of more contemporary human influenza viruses. The antibody genes had an unusually high degree of somatic mutation. The antibodies bound to the 1918 HA protein with high affinity, had exceptional virus-neutralizing potency and protected mice from lethal infection. Isolation of viruses that escaped inhibition suggested that the antibodies recognize classical antigenic sites on the HA surface. Thus, these studies demonstrate that survivors of the 1918 influenza pandemic possess highly functional, virus-neutralizing antibodies to this uniquely virulent virus, and that humans can sustain circulating B memory cells to viruses for many decades after exposure-well into the tenth decade of life.  相似文献   

3.
Gibbs MJ  Gibbs AJ 《Nature》2006,440(7088):E8; discussion E9-E8; discussion 10
Taubenberger et al. have sequenced the polymerase genes of the pandemic 'Spanish' influenza A virus of 1918, thereby completing the decoding of the genome of this virus. The authors conclude from these sequences that the virus jumped from birds to humans shortly before the start of the pandemic and that it was not derived from earlier viruses by gene shuffling, a process called reassortment. However, we believe that their evidence does not convincingly support these conclusions and that some of their results even indicate that, on the contrary, the virus evolved in mammals before the pandemic began and that it was a reassortant. In light of this alternative interpretation, we suggest that the current intense surveillance of influenza viruses should be broadened to include mammalian sources.  相似文献   

4.
The evolutionary interaction between influenza A virus and the human immune system, manifest as 'antigenic drift' of the viral haemagglutinin, is one of the best described patterns in molecular evolution. However, little is known about the genome-scale evolutionary dynamics of this pathogen. Similarly, how genomic processes relate to global influenza epidemiology, in which the A/H3N2 and A/H1N1 subtypes co-circulate, is poorly understood. Here through an analysis of 1,302 complete viral genomes sampled from temperate populations in both hemispheres, we show that the genomic evolution of influenza A virus is characterized by a complex interplay between frequent reassortment and periodic selective sweeps. The A/H3N2 and A/H1N1 subtypes exhibit different evolutionary dynamics, with diverse lineages circulating in A/H1N1, indicative of weaker antigenic drift. These results suggest a sink-source model of viral ecology in which new lineages are seeded from a persistent influenza reservoir, which we hypothesize to be located in the tropics, to sink populations in temperate regions.  相似文献   

5.
The epidemic situation of A H1N1 flu arose in North America in April 2009, which rapidly expanded to three continents of Europe, Asia and Africa, with the risk ranking up to 5. Until May 13th, the flu virus of A H1N1 had spread into 33 countries and regions, with a laboratory confirmed case number of 5728, including 61 deaths. Based on IRV and EpiFluDB database, 425 parts of A H1N1 flu virus sequence were achieved, followed by sequenced comparison and evolution analysis. The results showed that the current predominant A H1N1 flu virus was a kind of triple reassortment A flu virus: (i) HA, NA, MP, NP and NS originated from swine influenza virus; PB2 and PA originated from bird influenza virus; PB1 originated from human influenza virus. (ii) The origin of swine influenza virus could be subdivided as follows: HA, NP and NS originated from classic swine influenza virus of H1N1 subtype; NA and MP originated from bird origin swine influenza virus of H1N1 subtype. (iii) A H1N1 flu virus experienced no significant mutation during the epidemic spread, accompanied with no reassortment of the virus genome. In the paper, the region of the representative strains for sequence analysis (A/California/04/2009 (H1N1) and A/Mexico/4486/2009 (H1N1)) included USA and Mexico and was relatively wide, which suggested that the analysis results were convincing.  相似文献   

6.
Evidence for host-cell selection of influenza virus antigenic variants   总被引:25,自引:0,他引:25  
G C Schild  J S Oxford  J C de Jong  R G Webster 《Nature》1983,303(5919):706-709
Extensive antigenic variability and a capricious epidemiology are characteristics of influenza A and B viruses of man. The haemagglutinin (HA) undergoes frequent and progressive antigenic drift as a result of selection, under immunological pressure, of viruses possessing alterations in the amino acid sequences at specific sites in the molecule. Here we present evidence for an additional selection mechanism for antigenic variants of influenza virus that depends on differing host cell tropisms of virus subpopulations. These studies were initiated after earlier observations of the occurrence of a marked degree of antigenic variation during passage of laboratory strains of influenza virus in eggs and cell cultures (J.C.J., in preparation). We have now shown that cultivation of influenza B viruses in eggs selects subpopulations which are antigenically distinct from virus from the same source grown in mammalian cell cultures. As antigenic characterization of influenza virus strains for epidemiological purposes and for the preparation of influenza vaccines conventionally relies on the cultivation of virus in eggs, our findings may have important practical implications for vaccine design and efficacy.  相似文献   

7.
Influenza viruses are remarkably adept at surviving in the human population over a long timescale. The human influenza A virus continues to thrive even among populations with widespread access to vaccines, and continues to be a major cause of morbidity and mortality. The virus mutates from year to year, making the existing vaccines ineffective on a regular basis, and requiring that new strains be chosen for a new vaccine. Less-frequent major changes, known as antigenic shift, create new strains against which the human population has little protective immunity, thereby causing worldwide pandemics. The most recent pandemics include the 1918 'Spanish' flu, one of the most deadly outbreaks in recorded history, which killed 30-50 million people worldwide, the 1957 'Asian' flu, and the 1968 'Hong Kong' flu. Motivated by the need for a better understanding of influenza evolution, we have developed flexible protocols that make it possible to apply large-scale sequencing techniques to the highly variable influenza genome. Here we report the results of sequencing 209 complete genomes of the human influenza A virus, encompassing a total of 2,821,103 nucleotides. In addition to increasing markedly the number of publicly available, complete influenza virus genomes, we have discovered several anomalies in these first 209 genomes that demonstrate the dynamic nature of influenza transmission and evolution. This new, large-scale sequencing effort promises to provide a more comprehensive picture of the evolution of influenza viruses and of their pattern of transmission through human and animal populations. All data from this project are being deposited, without delay, in public archives.  相似文献   

8.
Poyang Lake is the largest inland freshwater lake in China and contains many species of wild birds and waterfowls.We conducted a survey of avian influenza viruses in nine semi-artificial waterfowl farms in Poyang Lake during January to March of 2010.Out of 1036 cloacal swabs collected,three H3N2 and one H4N6 influenza viruses were isolated from healthy mallards.All the isolates were genetically and phylogenetically characterized.The analysis of putative HA cleavage sites showed that all the four isolates possessed the molecular characteristics(QTRGL for H3N2 viruses,PEKASR for H4N6 virus) of lowly pathogenic avian influenza(LPAI) virus.The phylogenetic analysis of the viral genomes showed that all four virus isolates clustered in the Eurasian clade of influenza viruses.The M gene of the viruses possessed the highest homology with highly pathogenic H5N1 influenza viruses.In addition,co-infection of H3N2 and H4N6 in the same farm was observed.And interestingly,we isolated two subtypes viruses(H3N2 and H4N6) and their progeny virus(H3N2) with evidence of genome reassortment from the same farm,in which the PB1 and PB2 gene segments of H4N6 replaced those of the H3N2 strain.The results of animal infection experiments showed that all the four isolated viruses were lowly pathogenic to chickens and not pathogenic to mice,which was consistent with the results of genetic analysis.  相似文献   

9.
Taubenberger JK  Reid AH  Lourens RM  Wang R  Jin G  Fanning TG 《Nature》2005,437(7060):889-893
The influenza A viral heterotrimeric polymerase complex (PA, PB1, PB2) is known to be involved in many aspects of viral replication and to interact with host factors, thereby having a role in host specificity. The polymerase protein sequences from the 1918 human influenza virus differ from avian consensus sequences at only a small number of amino acids, consistent with the hypothesis that they were derived from an avian source shortly before the pandemic. However, when compared to avian sequences, the nucleotide sequences of the 1918 polymerase genes have more synonymous differences than expected, suggesting evolutionary distance from known avian strains. Here we present sequence and phylogenetic analyses of the complete genome of the 1918 influenza virus, and propose that the 1918 virus was not a reassortant virus (like those of the 1957 and 1968 pandemics), but more likely an entirely avian-like virus that adapted to humans. These data support prior phylogenetic studies suggesting that the 1918 virus was derived from an avian source. A total of ten amino acid changes in the polymerase proteins consistently differentiate the 1918 and subsequent human influenza virus sequences from avian virus sequences. Notably, a number of the same changes have been found in recently circulating, highly pathogenic H5N1 viruses that have caused illness and death in humans and are feared to be the precursors of a new influenza pandemic. The sequence changes identified here may be important in the adaptation of influenza viruses to humans.  相似文献   

10.
Ecological and immunological determinants of influenza evolution   总被引:26,自引:0,他引:26  
Ferguson NM  Galvani AP  Bush RM 《Nature》2003,422(6930):428-433
In pandemic and epidemic forms, influenza causes substantial, sometimes catastrophic, morbidity and mortality. Intense selection from the host immune system drives antigenic change in influenza A and B, resulting in continuous replacement of circulating strains with new variants able to re-infect hosts immune to earlier types. This 'antigenic drift' often requires a new vaccine to be formulated before each annual epidemic. However, given the high transmissibility and mutation rate of influenza, the constancy of genetic diversity within lineages over time is paradoxical. Another enigma is the replacement of existing strains during a global pandemic caused by 'antigenic shift'--the introduction of a new avian influenza A subtype into the human population. Here we explore ecological and immunological factors underlying these patterns using a mathematical model capturing both realistic epidemiological dynamics and viral evolution at the sequence level. By matching model output to phylogenetic patterns seen in sequence data collected through global surveillance, we find that short-lived strain-transcending immunity is essential to restrict viral diversity in the host population and thus to explain key aspects of drift and shift dynamics.  相似文献   

11.
Dozens of human cases infected with H7N9 subtype avian influenza virus (AIV) have been confirmed in China since March, 2013. Distribution data of sexes, ages, professions and regions of the cases were analyzed in this report. The results showed that the elderly cases, especially the male elderly, were significantly more than expected, which is different from human cases of H5N1 avian influenza and human cases of the pandemic H1N1 influenza. The outbreak was rated as a Grade Ⅲ (severe) outbreak, and it would evolve into a Grade IV (very severe) outbreak soon, using a method reported previously. The H7N9 AIV will probably circulate in humans, birds and pigs for years. Moreover, with the driving force of natural selection, the virus will probably evolve into highly pathogenic AIV in birds, and into a deadly pandemic influenza virus in humans. Therefore, the H7N9 outbreak has been assumed severe, and it is likely to become very or extremely severe in the future, highlighting the emergent need of forceful scientific measures to eliminate any infected animal flocks. We also described two possible mild scenarios of the future evolution of the outbreak.  相似文献   

12.
On March 31, 2013, the National Health and Family Planning Commission announced that human infections with a previously undescribed influenza A (H7N9) virus had occurred in Shanghai and Anhui Province, China. To investigate the possible origins of the H7N9 viruses causing these human infections, we collected 970 samples, including drinking water, soil, and cloacal and tracheal swabs of poultry from live poultry markets and poultry farms in Shanghai and Anhui Province. Twenty samples were positive for the H7N9 influenza virus. Notably, all 20 viruses were isolated from samples collected from live poultry markets in Shanghai. Phylogenetic analyses showed that the six internal genes of these novel human H7N9 viruses were derived from avian H9N2 viruses, but the ancestor of their HA and NA genes is uncertain. When we examined the phylogenetic relationship between the H7N9 isolates from live poultry markets and the viruses that caused the human infections, we found that they shared high homology across all eight gene segments. We thus identified the direct avian origin of the H7N9 influenza viruses that caused the human infections. Importantly, we observed that the H7N9 viruses isolated from humans had acquired critical mutations that made them more "human-like". It is therefore imperative to take strong measures to control the spread of H7N9 viruses in birds and humans to prevent further threats to human health.  相似文献   

13.
A highly pathogenic avian influenza virus, H5N1, caused disease outbreaks in poultry in China and seven other east Asian countries between late 2003 and early 2004; the same virus was fatal to humans in Thailand and Vietnam. Here we demonstrate a series of genetic reassortment events traceable to the precursor of the H5N1 viruses that caused the initial human outbreak in Hong Kong in 1997 (refs 2-4) and subsequent avian outbreaks in 2001 and 2002 (refs 5, 6). These events gave rise to a dominant H5N1 genotype (Z) in chickens and ducks that was responsible for the regional outbreak in 2003-04. Our findings indicate that domestic ducks in southern China had a central role in the generation and maintenance of this virus, and that wild birds may have contributed to the increasingly wide spread of the virus in Asia. Our results suggest that H5N1 viruses with pandemic potential have become endemic in the region and are not easily eradicable. These developments pose a threat to public and veterinary health in the region and potentially the world, and suggest that long-term control measures are required.  相似文献   

14.
Strategies for containing an emerging influenza pandemic in Southeast Asia   总被引:1,自引:0,他引:1  
Highly pathogenic H5N1 influenza A viruses are now endemic in avian populations in Southeast Asia, and human cases continue to accumulate. Although currently incapable of sustained human-to-human transmission, H5N1 represents a serious pandemic threat owing to the risk of a mutation or reassortment generating a virus with increased transmissibility. Identifying public health interventions that might be able to halt a pandemic in its earliest stages is therefore a priority. Here we use a simulation model of influenza transmission in Southeast Asia to evaluate the potential effectiveness of targeted mass prophylactic use of antiviral drugs as a containment strategy. Other interventions aimed at reducing population contact rates are also examined as reinforcements to an antiviral-based containment policy. We show that elimination of a nascent pandemic may be feasible using a combination of geographically targeted prophylaxis and social distancing measures, if the basic reproduction number of the new virus is below 1.8. We predict that a stockpile of 3 million courses of antiviral drugs should be sufficient for elimination. Policy effectiveness depends critically on how quickly clinical cases are diagnosed and the speed with which antiviral drugs can be distributed.  相似文献   

15.
广西猪瘟病毒的调查研究   总被引:2,自引:0,他引:2       下载免费PDF全文
1986~1989年,从广西5个地、市的10个病猪场猪体中分离到10个病毒。用猪瘟石门系标准强毒作对照,经病原性、抗原性及血清学试验,培养特性,血细胞吸附及病毒的形态结构观察,证明10个毒株为猪瘟病毒。它们有共同的抗原性。它们之间的区别只是毒力的强弱不同。从临床症状、病理变化和病程方面看,9个为亚急性猪瘟毒株;一个为慢性或温和性猪瘟毒株。  相似文献   

16.
猪流感病毒及其人类公共卫生意义   总被引:1,自引:0,他引:1  
猪流感是目前危害全世界养猪业的重要呼吸道疾病之一.目前猪流感的致病毒株主要有经典性H1N1,类人型流感病毒,类禽型流感病毒,H1N2亚型流感病毒,H5N1和H9N2亚型流感病毒.特别是从猪体分离H5N1和H9N2亚型流感病毒对禽流感的控制及人类公共卫生方面有重要意义.  相似文献   

17.
Subtypes of H1N1 influenza virus can be found in humans in North America, while they are also associated with the infection of swine. Characterization of the genotypes of viral strains in human populations is important to understand the source and distribution of viral strains. Genomic and protein sequences of 10 isolates of the 2009 outbreak of influenza A (H1N1) virus in North America were obtained from GenBank database. To characterize the genotypes of these viruses, phylogenetic trees of genes PB2, PB1, PA, HA, NP, NA, NS and M were constructed by Phylip3.67 program and N-Linked glycosylation sites of HA, NA, PB2, NS1 and M2 proteins were analyzed online by NetNGlyc1.0 program. Phylogenetic analysis indicated that these isolates are virtually identical but may be recombinant viruses because their genomic fragments come from different viruses. The isolates also contain a characteristic lowly pathogenic amino acid motif at their HA cleavage sites (IPSIQSR↓GL), and an E residue at position 627 of the PB2 protein which shows its high affinity to humans. The homologous model of M proteins showed that the viruses had obtained the ability of anti-amantadine due to the mutation at the drug-sensitive site, while sequence analysis of NA proteins indicated that the viruses are still susceptible to the neuraminidase inhibitor drug (i.e. oseltamivir and zanamivir) because no mutations have been observed. Our results strongly suggested that the viruses responsible for the 2009 outbreaks of influenza A (H1N1) virus have the ability to cross species barriers to infect human and mammalian animals based on molecular analysis. These findings may further facilitate the therapy and prevention of possible transmission from North America to other countries.  相似文献   

18.
The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses. Both the magnitude and breadth of the IFITM proteins' in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 'Spanish' influenza. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.  相似文献   

19.
动物源性流感病毒与人流感流行   总被引:1,自引:0,他引:1  
2009年4月.北美地区发生了人感染H1N1"猪流感"疫情,并且疫情呈现暴发漫延的态势.全世界关注的目光继1997年H5N1禽流感病毒感染人事件首次在中国香港发生,以及2003年以来包括15个国家和地区多起H5N1禽流感病毒感染人事件之后,再次聚焦到动物源性流感病毒上.是否动物流感病毒已经具备了引起人类疫情暴发的能力?是否新的一场大的人流感疫情就要暴发?为什么世界卫生组织又于4月30日为本次"猪流感"更名为"甲型H1N1流感"?对于流感暴发脚步的逼近我们是否做好了准备?本文对历史上人流感疫情暴发情况,动物流感病毒感染人事件的发生情况和流行病学特点,以及人流感疫情发生与动物流感病毒之间的关系等进行了总结与分析,以期更好地了解流感病毒在不同宿主之间的传播,为更加从容地面对这场突如其来的疫情,以及为疫情的预防和控制提供理论指导.为了能够准确反映这次流感的情况和国际对流感及流感病毒的统一命名法则,以及更加清晰并易于理解地表述清楚.我们建议将这次流感称作"北美流感"或"墨西哥流感".  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号