首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非晶合金晶化过程中结晶度的DSC法测定与控制(I)   总被引:1,自引:0,他引:1  
基于非晶合金相变的热力学原理:部分晶化非晶合金的晶化即为残留非晶相的转变,其相变热应正比于残留非晶相的相含量,本文导出了部分晶化非晶合金结晶度Xc的DSC法测量公式.进一步通过对其100%无定性样DSC曲线的分析发现:部分晶化非晶合金的Xc实际上即为其100%无定性样在同样退火条件下的转变分数fc.为了检验这一推论的正确性,本文选用Ni74Sil0B16非晶合金淬态样进行了一系列的等温退火处理和等温DSC测试.结果表明:通过DSC法测定部分晶化非晶合金试样的相变热,不仅可以求出该试样结晶度的大小,而且通过对该合金100%无定形试样的DSC曲线分析和跟踪,甚至可以预测和控制该合金一定退火条件下结晶度的大小.  相似文献   

2.
基于非晶合金相变的热力学原理:部分晶化非晶合金的晶化即为残留非晶相的转变,其相变热应正比于残留非晶相的相含量,本文导出了部分晶化非晶合金结晶度XC的DSC法测量公式.进一步通过对其100%无定性样DSC曲线的分析发现:部分晶化非晶合金的XC实际上即为其100%无定性样在同样退火条件下的转变分数fC.为了检验这一推论的正确性,本文选用Ni74Si10B16非晶合金淬态样进行了一系列的等温退火处理和等温DSC测试.结果表明:通过DSC法测定部分晶化非晶合金试样的相变热,不仅可以求出该试样结晶度的大小,而且通过对该合金100%无定形试样的DSC曲线分析和跟踪,甚至可以预测和控制该合金一定退火条件下结晶度的大小.  相似文献   

3.
在Cu45Zr45.5Ti9.5合金中加入少量金属元素Al,用铜模喷铸的方法成功制备出块体非晶合金Cu45Zr39.5Ti9.5Al6。利用差示扫描量热法(DSC)、X射线衍射(XRD)分析块体非晶合金在连续加热条件下的非等温晶化行为。结合Ozawa法算出的激活值表明块体非晶合金的抵抗晶化能力较强。在4种加热速率:10℃/min、15℃/min、20℃/min和25℃/min的非等温晶化处理后,析出相主要是Cu8Zr3和Cu10Zr7,晶粒均匀的分布在基体上。  相似文献   

4.
利用活性燃烧高速燃气喷涂方法(AC-HVAF)制备出一种高非晶含量的Fe基非晶合金涂层.根据非晶合金相变的热力学原理可知部分晶化的非晶合金的晶化即为残留非晶相的转变,其相变热应正比于残留非晶相的相含量.采用不同的热处理工艺使喷涂的非晶涂层晶化,利用DSC分析法测定了热处理后涂层中的纳米晶体含量和部分晶化非晶合金涂层试样的相变热,计算了该涂层试样的结晶度.实验结果和理论预测基本相符.  相似文献   

5.
采用机械合金化法成功制备Cu40Ti60-xZr(x=0,10,30,50)非晶合金.研究Cu-Ti-Zr合金粉末由晶态向非晶态转变过程中的组织结构变化,探讨非晶合金的形成机制,以及非晶合金的热稳定性和晶化产物.结果表明,非晶合金直接从初始元素得到,在反应过程中没有金属间化合物出现,非晶化过程可以由间隙扩散模型来解释.Cu40TixZry非晶粉末的DSC分析表明,随着Ti含量的降低和Zr含量的升高,非晶粉末的晶化温度Tx逐渐升高,对非晶粉末在相应的Tx温度附近退火15min后发现,Cu40Ti30Zr30合金没有析出相,Cu40Ti1Zr50析出了Zr2Cu,Cu4Ti和少量的一些未知相.  相似文献   

6.
采用铜模吸铸法制备Cu60Zr33Ti7大块非晶合金(BMGs),用X射线衍射仪(XRD)、透射电子显微镜(TEM)确定其非晶态结构,并利用同步示差扫描量热仪(DSC)对其晶化动力学进行研究.结果显示:该BMGs第一晶化峰晶化产物为Cu10Zr7,其晶化过程有显著的动力学效应.由Kissinger法和Ozawa法得到的全局晶化激活能分别为116.27、122.9kJ·mol-1,该大块非晶合金具有很好的热稳定性.  相似文献   

7.
用化学还原法制备出Co-Cu-B三元纳米合金粉末.通过X射线衍射(XRD),选区电子衍射(SAED)和非等温差热扫描量热分析(DSC)对所制备的样品进行分析.证实所制备的粉末为非晶纳米合金粉末,粉末组元除了以合金形态存在外,还有一部分以氧化态存在.DSC的分析结果表明,非晶Co-Cu-B纳米合金粉末的晶化是一步发生的,晶化体积分数与加热温度的关系曲线呈典型的S形状.用Kissinger法计算得出其晶化激活能为465.69 kJ/mol.用Suriach拟合法得出非等温晶化过程是通过已有晶核的直接长大完成的.  相似文献   

8.
本文采用单辊法制成了Al_(88.5)Y_(6.5)Ni_5(at-%)合金非晶薄带,用DSC法及X-射线衍射法研究了该非晶合金的晶化过程,测定了晶化过程中各种反应的温度,计算了各阶段反应的激活能。研究表明,加热速率为20K/min时,该非晶合金的起始晶化温度及晶化峰值温度分别为453K及469K;起始晶化激活能及晶化峰值激活能分别为168kJ/mol及163kJ/mol。由于该非晶合金具有较高的晶化温度及晶化激活能,表明其具有较高的热稳定性。  相似文献   

9.
利用单辊甩带法制备了Mg80-xCu10 xY10(x=0,5,10,15)非晶态合金薄带,用XRD分析和DSC分析显示薄带形成了非晶态结构.根据DSC曲线,确定了表示非晶形成能力的Tg、Tx、T1、Trg和△Tx等温度参数,同时提出了以晶化放热值和熔化吸热值的比值作为表示非晶形成能力的新参数——约化玻璃转变焓.定量DSC分析结果显示,新旧参数在表示该非晶薄带的非晶形成能力时,结果基本一致.  相似文献   

10.
钛基大块非晶合金的晶化研究   总被引:2,自引:0,他引:2  
利用铜模冷却法成功制备直径为12mm的棒状Ti40Zr25Cu9Ni8Be18(原子百分比)大块非晶态合金,X射线衍射(XRD)实验检验样品为完全非晶态。对样品进行差示扫描量热分析(DSC)考查样品的热稳定性,结果显示:过冷液相区宽度(Tg-Tx)、玻璃转变温度(Tg)及约化玻璃转变温度(Tg/Tm)分别为53K、617K和0.65。利用原位X射线测定了非晶样品的晶化过程,结果表明首先是亚稳相析出,最后转变为稳定相。最后利用不同加热速度(5K/min,10K/min,20K/min,40K/min)下的DSC对该非晶合金进行晶化动力学分析,获得了一些有价值的动力学参数。  相似文献   

11.
为研究Co元素的添加对Nd-Fe基非晶玻璃形成能力及磁性能的影响,利用铜模冷却法成功制备直径为5mm的棒状Nd60FexCo30-xAl10(原子百分比)大块非晶态合金,X射线衍射(XRD)检验,当Co含量为25%时,Nd60Fe5Co25Al10合金为完全非晶态,其余成分均有不同程度的晶化.对样品进行差示扫描量热分析(DSC)考查样品的热稳定性,结果显示:Co含量减少,晶化发生的温度有所降低.最后利用VSM磁性能测量设备,对上述成分的非晶合金进行磁性能测试,结果显示:相对于矫顽力而言,剩磁随Co含量的变化呈现出近似线性关系,随着Co含量的增加不断下降.  相似文献   

12.
研究了Zr含量对Zr71-xNixNb3Cu16Al10非晶合金的形成能力、晶化行为和力学性能的影响.采用快速凝固装置制备非晶合金,利用XRD和DSC对其非晶形成能力和晶化行为进行分析,通过压缩试验和SEM对其力学性能及断裂方式进行表征.结果表明:Zr原子百分比为62%时非晶形成临界直径最大,为9 mm;Zr含量不同改...  相似文献   

13.
Al80Ni15-xY2Zr3Cux合金的非晶形成能力及其热稳定性分析   总被引:3,自引:0,他引:3  
用单辊旋淬法制备了Al80Ni15-xY2Zr3Cux (x=1、3、4、6、7、9)铝基非晶条带,通过XRD和DSC等测试手段研究了合金体系的非晶形成能力和热稳定性.研究结果表明,该合金体系均具有一定的非晶形成能力,不同w(Cu)的体系的非晶形成能力和热稳定性有较大的差别,组分原子的相互匹配对合金体系的非晶形成能力起重要作用.当x=4时,体系具有最强的非晶形成能力,可形成完全非晶,其初始晶化温度为281.3 ℃.适当的w(Cu)的添加可提高体系的非晶形成能力,但过量铜会促使晶化相(如α-Al相)析出,随w(Cu)的增加,体系的热稳定性逐渐降低,体系的非晶形成能力与热稳定性不是同步变化的,是由不同的机理所决定.  相似文献   

14.
通过采用TEM分析技术对2个脆化程度不同的部分纳米晶化Ni78Si10B12D非晶合金的研究,考察了析出晶化相的种类,大小,形状,数量与分布等因数对Ni-Si-B非晶合金脆化程度的影响,对Morris关于析了脆化相后使Ni-Si-B非晶合金晶化变脆的推论进行了修正,指出析出脆化相的体积分数才是决定Ni-Si-B非晶合金晶化变脆的主要因数。  相似文献   

15.
通过采用TEM分析技术对2个脆化程度不同的部分纳米晶化Ni78Si10B12非晶合金的研究,考察了析出晶化相的种类,大小,形状,数量与分布等因数对Ni-Si-B非晶合金脆化程度的影响,对Morris关于析出脆化相后使Ni-Si-B非晶合金晶化变脆的推论进行了修正,指出析出脆化相的体积分数才是决定Ni-Si-B非晶合金晶化变脆的主要因数.  相似文献   

16.
非晶态Finemet合金的纳米晶化动力学研究   总被引:3,自引:0,他引:3  
利用差示扫描量热法(DSC)研究了非晶Finemet合金的纳米晶化动力学行为.晶化过程中的晶化峰值温度Tp与升温速率β之间存在着线性关系:Tp=533.7+0.82β.通过对不同升温速率的DSC曲线的分析,采用Kissinger方法和Ozava方法计算了非晶Finemet合金纳米晶化的表观激活能Eα,并采用拓展的Friedman方法计算了纳米晶化过程中的局域激活能E(α).在非晶Finemet合金纳米晶化的整个过程中,其晶化机制在初始阶段(0〈α〈0.2)是扩散控制的兰维形核和晶粒生长的整体晶化,形核速率逐渐减小;中间阶段(0.2〈α〈0.9)是扩散控制的一维形核和晶粒生长的表面晶化,形核速率近似为零;最后阶段(α〉0.9)存在反常的晶化行为,局域Avrami指数n从1.0上升到2.0左右,可能是因为在晶化后期Cu核消耗完毕以及一些α-Fe颗粒发生快速生长造成的.  相似文献   

17.
采用旋铸急冷工艺在大气环境中制各出了(Ni0.75Fe0.25)73Nb5Si10B12非晶合金带材.X射线衍射分析表明,样品为完全非晶.采用DiamondTG/DTA差热分析仪测量了非晶薄带的热稳定性及其相关参数Tg、Tx、Tm等.在720、750、800K分别对试样进行等温退火处理,在通商纯氢气保护下保温60min利用X射线衍射分析了非晶合金等温晶化时相转变及组织转变.在720K退火,组织仅发生少量晶化,先析出γ-(Fe,Ni)固溶体相;750K时发生部分晶化,组织为γ-(Fe,Ni)固溶体、(Fe,Ni)23nB6、Ni31Si12和Nb2Ni0.16;800K时合金完全晶化,组织与750K时相同.  相似文献   

18.
采用单辊快淬法制备Fe75Nb8B15Zr2非晶合金,对该非晶合金进行不同温度的等温退火,研究其晶化过程及结构变化.利用示差热分析仪(DTA)确定样品的退火温度,利用X射线衍射(XRD)测试其相结构.结果表明:Fe75Nb8B15Zr2合金在快淬速率为38m/s时呈完全非晶状态,随着退火温度的升高,α-Fe相逐渐析出,并伴随有硼化物(Fe3B和Fe2B)析出.Fe75Nb8B15Zr2非晶合金的晶化过程:非晶→非晶+α-Fe→α-Fe+Fe3B→α-Fe+Fe3B+Fe2B.  相似文献   

19.
介绍了一种测量非晶晶化激活能的新方法-MTGA法。分别用DSC和MTGA研究了Fe73.5Cu1Nb3Si13.5B9非晶合金的昌化动力学。结果表明。MTGA法不但比DSC法能更加详细反映出晶化动力学和相变的过程,而且用DSC和MTGA测量的a-Fe(si)相的晶化激活能基本一致。  相似文献   

20.
用差示扫描量热法(DSC),研究了Fe基非晶合金在不同的升温速率(5K/min、10K/min、20K/min、40K/min)下的DSC曲线,通过观察其不同的差热曲线,得到晶化放热峰和晶化吸热峰的位置,同时阐述了X射线衍射强度与径向分布函数(RDF)之间的关系、衍射强度的实验测定,并且结合计算非晶态合金径向分布函数的基本原理,计算了Fe基非晶合金的RDF。计算结果表明,在非晶态材料中随着与选作原点的原子间距离的增加,相关性就迅速减弱,在相距几个原子间距的原子之间就显不出相关作用,其相对位置接近完全无序。从而,由实验结果计算获得Fe系非晶合金的微观结构参数:最近邻原子间距R1=2.63712,次近邻原子间距R3=4.94952,配位数CN=12.83063。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号