首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Regulation of bone homeostasis depends on the concerted actions of bone-forming osteoblasts and bone-resorbing osteoclasts, controlled by osteocytes, cells derived from osteoblasts surrounded by bone matrix. The control of differentiation, viability and function of bone cells relies on the presence of connexins. Connexin43 regulates the expression of genes required for osteoblast and osteoclast differentiation directly or by changing the levels of osteocytic genes, and connexin45 may oppose connexin43 actions in osteoblastic cells. Connexin37 is required for osteoclast differentiation and its deletion results in increased bone mass. Less is known on the role of connexins in cartilage, ligaments and tendons. Connexin43, connexin45, connexin32, connexin46 and connexin29 are expressed in chondrocytes, while connexin43 and connexin32 are expressed in ligaments and tendons. Similarly, although the expression of pannexin1, pannexin2 and pannexin3 has been demonstrated in bone and cartilage cells, their function in these tissues is not fully understood.  相似文献   

2.
Summary This study is based on 100 consecutive germ cell tumors of the gonads, received during a 5-year period. Benign teratomas, with totipotent differentiation are the commonest ovarian germ cell tumors, whereas the nullipotent germinomas from the bulk of the testicular tumors. Differentiation in the rapidly proliferating testicular teratomas, occurs in the form of embryoid bodies and organoid structures. From an analysis of the germ cell tumors it is evident that the ovum confers differentiating functions on the zygote, while the spermatozoon confers functions of organization and proliferation. This difference in the behavior of the 2 germ cells is due to local feedbacks within the cortical and medullary zones of the gonads.Acknowledgments. I wish to thank Dr S. K. Lal, Maulana Azad Medical College, New Delhi, for his valuable suggestions concerning gonadal functions. Reprint requests to B. I., B-72, Pandara Road, New Delhi-110003 (India).  相似文献   

3.
Cbl proteins control multiple cellular processes by acting as ubiquitin ligases and multifunctional adaptor molecules. They are involved in the control of cell proliferation, differentiation and cell morphology, as well as in pathologies such as autoimmune diseases, inflammation and cancer. Here we review recent advances in understanding the role of Cbl and the importance of a growing repertoire of Cbl-interacting proteins in the regulation of signaling pathways triggered by growth factors, antigens, cell adhesion, cytokines and hormones. We also address key issues of the nature of proteins that bind Cbl in particular cells, where they are located, and how they are altered or traffic within cells upon stimulation. It is becoming obvious that temporal and spatial changes in Cbl signaling networks are essential for the control of physiological processes in a variety of cells and organs and that their deregulation can result in the development of human diseases.Received 22 January 2003; received after revision 11 March 2003; accepted 26 March 2003  相似文献   

4.
Sex determination is essential for the sexual reproduction to generate the next generation by the formation of functional male or female gametes. In mammals, primary sex determination is commenced by the presence or absence of the Y chromosome, which controls the fate of the gonadal primordium. The somatic precursor of gonads, the genital ridge is formed at the mid-gestation stage and gives rise to one of two organs, a testis or an ovary. The fate of the genital ridge, which is governed by the differentiation of somatic cells into Sertoli cells in the testes or granulosa cells in the ovaries, further determines the sex of an individual and their germ cells. Mutation studies in human patients with disorders of sex development and mouse models have revealed factors that are involved in mammalian sex determination. In most of mammals, a single genetic trigger, the Y-linked gene Sry (sex determination region on Y chromosome), regulates testicular differentiation. Despite identification of Sry in 1990, precise mechanisms underlying the sex determination of bipotential genital ridges are still largely unknown. Here, we review the recent progress that has provided new insights into the mechanisms underlying genital ridge formation as well as the regulation of Sry expression and its functions in male sex determination of mice.  相似文献   

5.
The vast majority of mammalian testes are located outside the body cavity for proper thermoregulation. Heat has an adverse effect on mammalian spermatogenesis and eventually leads to sub- or infertility. Recent studies have provided insights into the molecular response of male germ cells to high temperatures. Here, we review the effects of heat on male germ cells and discuss the mechanisms underlying germ cell loss and impairment. We also discuss the role of translational control in male germ cells as a potential protective mechanism against heat-induced germ cell apoptosis.  相似文献   

6.
7.
Fank1 interacts with Jab1 and regulates cell apoptosis via the AP-1 pathway   总被引:1,自引:0,他引:1  
Regulation of apoptosis at various stages of differentiation plays an important role in spermatogenesis. Therefore, the identification and characterisation of highly expressed genes in the testis that are involved in apoptosis is of great value to delineate the mechanism of spermatogenesis. Here, we reported that Fank1, a novel gene highly expressed in testis, functioned as an anti-apoptotic protein that activated the activator protein 1 (AP-1) pathway. We found that Jab1 (Jun activation domain-binding protein 1), a co-activator of AP-1, specifically interacted with Fank1. Reporter analyses showed that Fank1 activated AP-1 pathway in a Jab1-dependent manner. Fank1 overexpression also increased the expression and activation of endogenous c-Jun. Further study showed that Fank1 inhibited cell apoptosis by upregulating and activating endogenous c-Jun and its downstream target, Bcl-3. This process was shown to be Jab1 dependent. Taken together, our results indicated that by interacting with Jab1, Fank1 could suppress cell apoptosis by activating the AP-1-induced anti-apoptotic pathway.  相似文献   

8.
New blood vessel formation, a process referred to as angiogenesis, is essential for embryonic development and for many physiological and pathological processes during postnatal life, including cancer progression. Endothelial cell adhesion molecules of the integrin family have emerged as critical mediators and regulators of angiogenesis and vascular homeostasis. Integrins provide the physical interaction with the extracellular matrix necessary for cell adhesion, migration and positioning, and induction of signaling events essential for cell survival, proliferation and differentiation. Antagonists of integrin alpha V beta 3 suppress angiogenesis in many experimental models and are currently tested in clinical trials for their therapeutic efficacy against angiogenesis-dependent diseases, including cancer. Furthermore, interfering with signaling pathways downstream of integrins results in suppression of angiogenesis and may have relevant therapeutic implications. In this article we review the role of integrins in endothelial cell function and angiogenesis. In the light of recent advances in the field, we will discuss their relevance as a therapeutic target to suppress tumor angiogenesis.  相似文献   

9.
Development and differentiation of the intestinal epithelium   总被引:12,自引:0,他引:12  
The gastrointestinal tract develops from a simple tube to a complex organ with patterns of differentiation along four axes of asymmetry. The organ is composed of all three germ layers signaling to each other during development to form the adult structure. The gut epithelium is a constitutively developing tissue, constantly differentiating from a stem cell in a progenitor pool throughout the life of the organism. Signals from the adjacent mesoderm and between epithelial cells are required for normal orderly development/differentiation, homeostasis, and apoptosis. Embryonically important patterning factors are used during adult stages for these processes. Such critical pathways as the hedgehog, bone morphogenetic protein, Notch, Sox, and Wnt systems are used both in embryologic and adult times of gut development. We focus on and review the roles of these factors in gut epithelial cell development and differentiation.Received 18 October 2002; received after revision 18 December 2002; accepted 18 December 2002  相似文献   

10.
11.
The maintenance of mucosal barrier equilibrium in the intestine requires a delicate and dynamic balance between enterocyte loss by apoptosis and the generation of new cells by proliferation from stem cell precursors at the base of the intestinal crypts. When the balance shifts towards either excessive or insufficient apoptosis, a broad range of gastrointestinal diseases can manifest. Recent work from a variety of laboratories has provided evidence in support of a role for receptors of the innate immune system, including Toll-like receptors 2, 4, and 9 as well as the intracellular pathogen recognition receptor NOD2/CARD15, in the initiation of enterocyte apoptosis. The subsequent induction of enterocyte apoptosis in response to the activation of these innate immune receptors plays a key role in the development of various intestinal diseases, including necrotizing enterocolitis, Crohn’s disease, ulcerative colitis, and intestinal cancer. This review will detail the regulatory pathways that govern enterocyte apoptosis, and will explore the role of the innate immune system in the induction of enterocyte apoptosis in gastrointestinal disease.  相似文献   

12.
The neuroepithelial stem cell protein, or Nestin, is a cytoskeletal intermediate filament initially characterized in neural stem cells. However, current extensive evidence obtained in in vivo models and humans shows presence of Nestin+ cells with progenitor and/or regulatory functions in a number of additional tissues, remarkably bone marrow. This review presents the current knowledge on the role of Nestin in essential stem cell functions, including self-renewal/proliferation, differentiation and migration, in the context of the cytoskeleton. We further discuss the available in vivo models for the study of Nestin+ cells and their progeny, their function and elusive nature in nervous system and bone marrow, and their potential mechanistic role and promising therapeutic value in preclinical models of disease. Future improved in vivo models and detection methods will allow to determine the true essence of Nestin+ cells and confirm their potential application as therapeutic target in a range of diseases.  相似文献   

13.
14.
In mouse embryonic stem (mES) cells, the expression of p27 is elevated when differentiation is induced. Using mES cells lacking p27 we tested the importance of p27 for the regulation of three critical cellular processes: proliferation, differentiation, and apoptosis. Although cell cycle distribution, DNA synthesis, and the activity of key G1/S-regulating cyclin-dependent kinases remained unaltered in p27-deficient ES cells during retinoic acid-induced differentiation, the amounts of cyclin D2 and D3 in such cells were much lower compared with normal mES cells. The onset of differentiation induces apoptosis in p27-deficient cells, the extent of which can be reduced by artificially increasing the level of cyclin D3. We suggest that the role of p27 in at least some differentiation pathways of mES cells is to prevent apoptosis, and that it is not involved in slowing cell cycle progression. We also propose that the pro-survival function of p27 is realized via regulation of metabolism of D-type cyclin(s).Received 25 February 2004; received after revision 5 April 2004; accepted 15 April 2004  相似文献   

15.
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.  相似文献   

16.
Trefoil factors   总被引:5,自引:0,他引:5  
There is convincing evidence that trefoil factors (TFFs) do play an important role in tumourigenesis. However, their specific roles in cancer are not yet clear. Recently, TFFs have been shown to interfere with crucial biological processes such as cell proliferation, differentiation, apoptosis and angiogenesis. Research on the function of TFFs and its relationship with specific signal transduction pathways has also advanced significantly. As a consequence, some ideas about the role of TFFs in cancer have started to take shape. The objective of this review is to summarize and discuss current knowledge on the relationship between TFFs and cancer.  相似文献   

17.
Gap junctions consist of arrays of intercellular channels composed of integral membrane proteins called connexin in vertebrates. Gap junction channels regulate the passage of ions and biological molecules between adjacent cells and, therefore, are critically important in many biological activities, including development, differentiation, neural activity, and immune response. Mutations in connexin genes are associated with several human diseases, such as neurodegenerative disease, skin disease, deafness, and developmental abnormalities. The activity of gap junction channels is regulated by the membrane voltage, intracellular microenvironment, interaction with other proteins, and phosphorylation. Each connexin channel has its own property for conductance and molecular permeability. A number of studies have tried to reveal the molecular architecture of the channel pore that should confer the connexin-specific permeability/selectivity properties and molecular basis for the gating and regulation. In this review, we give an overview of structural studies and describe the structural and functional relationship of gap junction channels.  相似文献   

18.
Cellular communication between the bone component cells osteoblasts, osteocytes and (pre-)osteoclasts is essential for bone remodeling which maintains bone integrity. As in the remodeling of other organs, cell death is a trigger for remodeling of bone. During the systematic process of bone remodeling, direct or indirect cell–cell communication is indispensable. Thus, osteoblasts induce migration and differentiation of preosteoclasts, which is followed by bone resorption (by mature multinuclear osteoclasts). After completion of bone resorption, apoptosis of mature osteoclasts and differentiation of osteoblasts are initiated. At this time, the osteoblasts do not support osteoclast differentiation but do support bone formation. Finally, osteoblasts differentiate to osteocytes in bone or to bone lining cells on bone surfaces. In this way, old bone areas are regenerated as new bone. In this review the role of cell–cell communication in bone remodeling is discussed.  相似文献   

19.
20.
细胞凋亡研究进展   总被引:9,自引:0,他引:9  
细胞凋亡(apoptosis)是机体正常细胞在受到生理和病理性刺激后出现的一种自发的死亡过程,是一个主动、高度有序、基因控制及一系列酶参与的过程.细胞凋亡在保证多细胞生物健康生存过程中扮演着关键角色,对个体的正常发育具有重要作用.它在多细胞生物的组织分化、器官发育、机体稳态的维持中有着重要的意义.机体在产生新生细胞的同时,衰老和突变的细胞通过凋亡机制而被清除,使器官和组织得以正常地发育和代谢.细胞凋亡发生异常会导致疾病的发生,如肿瘤、自身免疫性疾病、病毒感染和神经退化性疾病等.由于细胞凋亡的重要意义,它在生物进化过程中不但得到了保留,而且从简单的多细胞生物线虫,到高度进化的人类,细胞凋亡机制随着生物的进化得到了发展和完善.本文概述了细胞凋亡的特征、分子机制、信号途径、检测方法及生物学意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号