首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环氧及其复合材料气固界面快脉冲闪络特性   总被引:3,自引:0,他引:3  
设计了用于气固界面闪络的实验装置,可以安装指形电极(曲率半径为10mm)和平板电极.该设备可输出峰值为125kV、上升沿和半高宽为20ns/5μs的快脉冲.研究了无试样时指形电极系统在不同气压下的击穿特性,在空气和SF6气体中不同气压下纯环氧的脉冲闪络特性,以及不同质量分数的Al2O3·3H2O环氧复合材料在0.4MPa空气中的沿面闪络特性.结果表明,SF6气体中绝缘介质的闪络电压较空气中有更大的分散度,环氧复合材料质量分数为20%时闪络电压最低.  相似文献   

2.
溅射金膜对氧化铝陶瓷纳秒脉冲真空沿面闪络的影响   总被引:1,自引:0,他引:1  
研究了溅射金膜对氧化铝陶瓷在真空环境中、纳秒脉冲高电压作用下沿面闪络特性的影响规律.通过对氧化铝陶瓷表面粗糙度、电极接触形式的研究,并结合表面态陷阱、界面能带结构、电荷注入过程的分析,探究了影响氧化铝陶瓷溅射金膜后沿面闪络电压的主要原因.在50 ns/1.2μs脉冲下、电极间距10 mm时,测量各试样的闪络电压60次,取后30次平均值作为稳定的闪络电压.研究结果发现,氧化铝陶瓷在溅射金膜电极试样的闪络电压比直接压接电极试样的闪络电压低,这是因为在不同电极接触方式下,氧化铝陶瓷材料的表面态对真空中的电子发射和材料表层的电荷注入的影响不同所致.  相似文献   

3.
本文研究了镁对H13模具钢中夹杂物的影响,对H13钢中夹杂物的变性进行了热力学计算,分析了镁对夹杂物成分、形貌和粒径分布的影响。结果表明,镁处理H13钢后,夹杂物由Al2 O3转变为MgO·Al2 O3,复合型夹杂物的析出位置也发生了改变,夹杂物粒径变小。镁处理使钢中1μm左右的夹杂物增多,2μm以上的夹杂物减少,随着镁含量的升高,粒径的变化更明显。铝质量分数为0.01%~0.03%的H13钢中,微量的镁就可促使MgO·Al2O3夹杂物形成,镁质量分数超过1×10^-4会导致H13钢中MgO·Al2O3完全消失,镁质量分数在3×10^-5~5.5×10^-5时钢液中镁铝尖晶石的数量达到最多。  相似文献   

4.
制备和研究了具有H2S,(MoS2 NiS Ag)/Li2SO4 Al2O3/(NiO Ag),air结构的H2S固体氧化物燃料电池用于产生电能和脱除燃料气体中的H2S.电池在600~650 ℃和大气压下运行.燃料电池的电化学性能受电解膜的组成,电极材料和操作温度影响.掺杂了Al2O3 和少量H3BO4的Li2SO4质子传导膜可以提高膜的机械强度和性能,改善膜的致密性和电池的性能.适宜的Li2SO4 和 Al2O3 比为3~4∶1(质量比), 适宜掺杂H3BO4的量为2%~5%(w).掺杂了Ag粉和电解质的金属硫化物复合阳极在H2S气流下很稳定和性能很好, 掺杂了Ag粉和电解质的的NiO复合阴极在去除H2S时性能优于Pt电极催化剂.在650 ℃电池的最大输出功率密度为70 mW·cm -2,最大电流密度为180 mA·cm -2.然而,电池长期运行的稳定性实验仍有待研究.  相似文献   

5.
基于变插入层介电常数的多层绝缘结构能改善电场分布、提高真空沿面闪络特性.通过真空热压烧结制备了TiO2/Al2O3-Al2O3-TiO2/Al2O3(A-B-A)3层绝缘结构,A层w(TiO2)为0.5%到20%.测量了该绝缘结构的真空沿面闪络特性,发现闪络特性随w(TiO2)的增加而提高,当w(TiO2)为20%时,其脉冲初次闪络电压较同等厚度的Al2O3陶瓷提高了63%.研究发现:A层的介电常数可由w(TiO2)调控,介电常数的增大能有效降低真空-绝缘子-阴极三结合点处的电场强度;A层表面存在的TiO2颗粒可以减小二次电子发射系数并改善表面电荷分布;TiO2的电导率虽比Al2O3高,但其仍为绝缘体,即使TiO2含量较高时也不会形成贯穿的导电通道.  相似文献   

6.
以铂电极为基体,用电沉积方法制备了铁氰化钴修饰电极,研究了该电极的电化学特性及H2O2在该修饰电极上的电化学行为。实验表明,该电极对H2O2具有催化作用;在4.9×10^-5~1.1×10^-3mol/L范围内,峰电流与H2O2的浓度呈线性关系(R=0.9986),检出限为1.3×10^-5mol/L。  相似文献   

7.
首次以无机盐 Al Cl3· 6 H2 O为原料 ,制得 γ- Al OOH溶胶 ,采用电泳法制备微孔Al2 O3陶瓷膜 ;研究了影响电泳沉积成膜速率的因素如沉积电流 -沉积时间和沉积速率 -沉积时间的关系及电极种类对电泳过程的影响 ;探讨了γ- Al OOH溶胶粒的带电机理和电泳成膜过程  相似文献   

8.
建立了绝缘工程陶瓷双电极电火花加工温度场的数学模型,应用有限元方法对其进行了数值模拟,仿真了不同加工条件下Al2O3陶瓷的温度场分布,得到了不同加工参数对放电凹坑形状的影响规律.仿真结果表明,Al2O3陶瓷的温度场在热影响区内随着脉,中宽度、加工电流的增加或铜片电极厚度的减少而增加,在热影响区外温度几乎没有变化;加工后放电蚀坑的宽度和深度也随着脉,中宽度、加工电流的增加或铜片电极厚度的减少而增加.模拟结果为预测Al2O3陶瓷表面形貌、揭示双电极电火花加工的放电机理、合理选择加工参数等提供了理论依据。  相似文献   

9.
用不同方法制备H2 S气敏元件 .将 (CH4) 5H5[H2 (WO4) 6]·H2 O重结晶热分解得到纳米WO3 材料 ,再掺杂ZnS以及Al2 O3 制得的气敏元件对微量H2 S气体具有较好的灵敏度、选择性和较快的响应恢复特性 .用X射线衍射仪分析了材料的微观结构 .  相似文献   

10.
不同摩尔配比Al2O3-ZrO2复合粉体的物相   总被引:1,自引:0,他引:1  
用Al(NO3)3·9H2O和ZrOCl2·8H2O为原料,氨水做沉淀剂,采用共沉淀法分别制备了不同摩尔比的Al2O3-ZrO2复合粉体,利用XRD、TEM对所得粉体进行了分析表征.结果表明,相同热处理温度(1 200 ℃)下,ZrO2均以四方相存在且粒径逐渐减小;相同摩尔配比条件下,随着煅烧温度的升高,m-ZrO2的体积分数逐渐增加.表明在复合粉体中Al2O3的存在抑制了ZrO2的t→m相变和晶粒长大,ZrO2对Al2O3的长大也有一定的阻碍作用.  相似文献   

11.
本文研究了镁对H13模具钢中夹杂物的影响,对H13钢中夹杂物的变性进行了热力学计算,分析了镁对夹杂物成分、形貌和粒径分布的影响。结果表明,镁处理H13钢后,夹杂物由Al2O3转变为MgO·Al2O3,复合型夹杂物的析出位置也发生了改变,夹杂物粒径变小。镁处理使钢中1μm左右的夹杂物增多,2μm以上的夹杂物减少,随着镁含量的升高,粒径的变化更明显。铝质量分数为0.01%~0.03%的H13钢中,微量的镁就可促使MgO·Al2O3夹杂物形成,镁质量分数超过1×10-4会导致H13钢中MgO·Al2O3完全消失,镁质量分数在3×10-5~5.5×10-5时钢液中镁铝尖晶石的数量达到最多。  相似文献   

12.
以H3BO3为助熔剂,在1200℃、H2还原气氛下成功制备出绿色荧光粉SrAl2O4∶Eu2+,并研究了不同H3BO3含量对SrAl2O4∶Eu2+发光性能和余辉特性的影响,结果表明随着H3BO3含量的增加,样品的发射光谱发生了"蓝移"现象,并随B3+的掺入,Sr0.96Al2O4∶0.04Eu2+呈现出了长余辉特性,同时增强了样品的发光强度和余辉时间,最佳的H3BO3含量为15%,其余辉时间可以达到6h.  相似文献   

13.
利用循环伏安法研究了磨料颗粒对玻碳电极和铂电极电催化肾上腺素在0.5mol/LH2SO4介质中氧化过程的影响.结果表明,磨料颗粒使玻碳电极对肾上腺素的电氧化表现出较高的电催化活性,而对铂电极没有改善;对于SiC、Al2O3两种磨料,都是砂纸打磨最好,磨料粉打磨较差,粘附磨料粉最差;不论砂纸打磨、磨料粉打磨,还是粘附粉。都是SiC好于Al2O3;随着砂纸的粗糙程度增大。电流强度增大,电位差基本不变;肾上腺素在不同预处理电极上的电子转移过程均为扩散控制.  相似文献   

14.
对锐钛矿型Ti O2在高钙体系下的反应进行了热力学和动力学分析,确定了理论上能发生的反应,计算了活化能和反应级数并判断出反应控制类型.通过实验研究了锐钛矿型Ti O2在Ti O2-Ca O-Na Al O2体系下的反应行为.结果表明,在Ti O2与Ca O物质量的比为1,反应1 h,铝酸钠溶液中Na2O的质量浓度为220 g/L,Na2O与Al2O3物质量的比为3.1的条件下,随着温度的升高,首先Ti O2与Na OH反应生成Na2Ti O3,Ca(OH)2和Na Al(OH)4反应生成3Ca O·Al2O3·6H2O,反应产物3Ca O·Al2O3·6H2O与Na2Ti O3反应最终可以得到稳定的Ca Ti O3.锐钛矿型Ti O2可在220℃以上完全转型为Ca Ti O3,升高温度能促进钛向最终物相Ca Ti O3的转型.  相似文献   

15.
以分析纯化学试剂为原料,研究了不同F含量的CaO-Al2O3-SiO2三元系铝酸钙熟料的自粉性能、烧结规律和Al2O3的浸出性能,并通过XRF,XRD,SEM-EDS等手段探索了其作用机理.结果表明:F的加入不影响β-2CaO·SiO2向γ-2CaO·SiO2转变,熟料的自粉性良好;F对铝酸钙熟料的物相组成产生明显影响,促进2CaO·Al2O3·SiO2和11CaO·7Al2O3·CaF2相的生成,并减少12CaO·7Al2O3,CaO·Al2O3相的生成;生成的2CaO·Al2O3·SiO2进入渣中造成Al2O3浸出率降低;当F的质量分数为0~20%时,Al2O3的浸出率随着F含量的增加急剧下降,由9501%降至70%左右;铝酸钙熟料中F的质量分数应低于05%.  相似文献   

16.
分别以FeCl3·6H2O,FeSO4·7H2O和Fe(NO3)3·9H20为铁源,NH4H2PO4,H3PO4和(NH4)3PO4·3H2O为磷源,用沉淀法制备了FePO4.研究了沉淀过程中原料、pH值以及表面活性剂对FePO4形貌的影响.采用X射线衍射、扫描电镜分别对样品的物相、形貌进行表征.研究结果表明,FePO4的形貌控制可以通过铁源、磷源、表面活性剂的选择和pH值等的控制来实现.H3PO4为磷源,以FeCl3·6H2O为铁源,当pH〈l时,制备的样品为均匀的铁皮石斛形,加入PEG后为自组装的圆片状,当pH〉1时,形貌为鸟巢形;以FeSO4·7H2O为铁源制备的样品形貌也以鸟巢形为主;以Fe(NO3)3·9H2O为铁源制备的样品表现为花状;以FeCl4·6H2O为铁源、(NH4)3PO4·3H2O为磷源制备的样品为不规则的片状;以FeSO4·7H2O为铁源、NH4H2PO4为磷源时制备的样品为类球形.表面活性剂及其用量在一定程度上有助于片状FePO4的制备.  相似文献   

17.
研究了不同载体(SiO2、Al2O3、TiO2)负载的钴基费-托合成催化剂在氢气气氛下的还原行为.采用原位X-射线衍射(in-situ XRD)、氢气程序升温还原(H2-TPR)技术对催化剂的还原过程进行原位表征,考察了催化剂中活性相Co3O4在还原过程中的物相变化和不同载体对Co3O4还原过程的影响.结果表明:不同载体负载的钴基费-托合成催化剂的还原均分为2步进行,2步还原过程为:Co3O4 H2→3CoO H2O和3CoO 3H2→3Co0 3H2O.不同载体负载的钴基费-托合成催化剂在氢气气氛下的还原性大小顺序为:Co/SiO2>Co/TiO2>Co/Al2O3.  相似文献   

18.
采用高温固相法制备了Sr3Al2O6:Eu2+, Dy3+红色长余辉发光材料,研究了H3BO3掺杂量对其性能的影响.利用X射线衍射仪对材料的物相进行了分析,结果表明,1 200℃下制备的不同H3BO3掺杂量样品的物相为Sr3Al2O6 ;采用荧光分光光度计、照度计测定了样品的发光特性,结果表明Sr3Al2O6:Eu2+,Dy3+的激发峰位于472 nm的宽带谱,发射峰为位于612 nm的宽带谱,对应于Eu2+的4f65d1→4f7的跃迁;H3BO3的加入在促进产物晶化的同时,还可改变进入晶格中的Eu、Dy离子的浓度,从而改善余辉特性.余辉测试表明,Sr2.95Al1.8O6:0.02Eu2+,0.03Dy3+,0.2B3+的余辉时间最长,可达620 s(≥1 mcd/m2).  相似文献   

19.
冶炼过程中产生的夹杂物对65钢(C:0.62~0.70、Si:0.17 ~0.37、Mn:0.50~0.80)性能有较大影响,采用扫描电子显微镜分析了不同生产阶段65钢中夹杂物,结果表明,转炉出钢钢样中氧化物夹杂主要为FeO·CaO·SiO2、Al2O3·CaO·SiO2和SiO2·MnO,喂线前钢样中氧化物夹杂主要为CaO·SiO2·Al2O3和SiO2·MnO·Al2O3,中间包钢样中的氧化物夹杂主要为CaO · Al2O3 MnO·SiO2 · FeO和MnO · Al2O3·FeO,盘条中氧化物夹杂主要为CaO ·Al2O3型和CaO·CaS·MnS复合夹杂物.加强合金脱氧、优化钙处理、提高水口氩封和优质保护渣,可促进钢中夹杂物的控制和去除.  相似文献   

20.
采用电沉积法在铜电极上进行了Fe-Co-W磁性薄膜的制备,并研究了镀液中钨盐(Na2WO4·2H2O)含量对Fe-Co-W薄膜形貌、结构和磁性能的影响。镀液组分浓度为Fe SO4·7H2O 0.08 mol/L,Co SO4·7H2O 0.05 mol/L,Na2WO4·2H2O 0.01-0.015 mol/L,H3BO30.2 mol/L,Na3C6H5O7·2H2O 0.2mol/L。结果表明,Na2WO4·2H2O含量对薄膜的表面形貌影响较大。随着溶液中Na2WO4·2H2O含量的增加,薄膜中W含量增加,纳米晶晶粒尺寸减小,薄膜矫顽力减小,在Na2WO4·2H2O为19.8 wt.%时薄膜为非晶态,Co含量反常增加,导致矫顽力反常增加。在Na2WO4·2H2O含量为27.3 wt.%时,其薄膜矫顽力为2.74 Oe,软磁性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号