首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
对历史负荷数据进行处理是提高电力系统负荷预测精度首先要解决的问题。脏数据处理的过程就是对于含有脏数据的负荷曲线模式的辨识过程。首先利用自适应共振网络(ART网)对日负荷曲线进行分类,确定出每一类负荷曲线的特征曲线;然后用超圆神经网络(CC网)对特征曲线进行脏数据辨识;最后利用扩展短期负荷预测方法对脏数据进行修正。对某市2002年8月份的数据进行脏数据辨识,结果证明所提出的模型对脏数据的平均检测率为92.11%,效果令人满意。采用该处理过的历史数据对某市2002年8月14日的负荷进行预测,结果表明,利用该方法处理后的数据进行负荷预测提高了负荷预测的精度。  相似文献   

2.
SCADA 系统数据库中一般会有一些异常的电力负荷数据,直接用其来进行短期负荷预测将影响预测结果的准确性,因此有必要对这些异常数据进行辨识和修正. 文中同时考虑负荷的横向连续性和纵向连续性,先把负荷数据按照日期排列成二维数据集,然后采用基于密度的方法,在两个维度中对异常数据进行辨识与修正,最后通过实例分析验证了该方法的有效性.  相似文献   

3.
负荷历史数据由于各种原因含有一定的坏数据,在进行高精度的电力负荷预测或系统分析前必须对历史数据进行预处理.本文采用基于加权核函数的模糊C均值聚类的改进算法-WKFCM,以核诱导距离的简单两项和替代欧氏距离作为聚类目标公式的不相似性测度函数,减小了计算复杂度.对数据进行聚类之后,采用收敛速度快、模式分类能力强的超圆神经元网络数据辨识模型,并对识别出的坏数据进行修正,实例证明本文提出的数据处理模型具有较好的效果.  相似文献   

4.
针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法. 为解决传统SVT容易忽视数据先验信息的问题,引入相空间重构算法将原始缺失数据映射到高维空间,利用数据间的关联性和结构特征,为后续数据恢复算法提供先验知识;结合对数与Sigmoid函数构建变步长基础函数,并利用等比项提高前期步长,构建自适应变步长SVT算法,克服传统SVT在大规模数据情况下计算效率低的问题. 结合多项公用电力负荷数据集及多种常用电力负荷数据恢复算法进行对比实验分析,结果表明,改进SVT算法可获得更好的数据恢复效果,收敛速度、精度以及稳定性得到提升,具有较强的工程实用性.  相似文献   

5.
针对已有负荷识别方法存在选取的负荷印记冗余度大及无法直接反映负荷功率信息的不足,提出一种多维数据图像化的非侵入式负荷识别方法.首先将负荷的电流波形、瞬时功率波形和电压-无功电流轨迹三个维度的负荷印记转换成灰度图像;然后将其分别加载到图像的红绿蓝通道上,得到带有功率信息的真彩色图像;最后通过简化的二维卷积神经网络进行负荷识别.实验结果表明:本方法能够提升图像的信息密度,使得所采用的人工智能网络在计算量和参数量都降低的情况下仍能在图像中找到最具有辨识力的区域进行高效的负荷识别;在PLAID(即插即用设备标识数据集)和WHITED(全球家庭和工业瞬态能量数据集)上分别达到了98.78%和99.50%的识别准确率.  相似文献   

6.
针对某些发达城市因负荷波动大而导致的长期电力负荷预测精度低问题,提出了一种基于数据驱动线性聚类(data-driven linear clustering,DLC)的自回归积分滑动平均(auto-regressive integral moving average,ARIMA)预测方法。首先,利用线性特征作为聚类标准对每年的大型变电站负荷数据集进行预处理;然后,对得到的每个子序列构建最优自回归积分滑动平均模型,以预测其相应的未来负荷;最后,汇总所有的模型预测结果从而获得电力系统长期负荷预测结果。从误差分析和应用结果可知,理论和实践都验证了所提出的方法在保证建模精度的同时能够降低随机预测误差,从而获得更稳定、更精准的电力系统负荷预测结果。  相似文献   

7.
针对短期电力负荷数据随机性强,难以实现准确预测的问题,提出了一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)和时间卷积网络-长短期记忆网络(temporal convolutional network-long short-term memory network, TCN-LSTM)混合模型的预测方法。所提算法先使用CEEMDAN方法将负荷数据分解为一系列相对平稳的子序列。同时为了降低后续计算规模,通过引入排列熵的方法将各子序列进行重组。然后,将各个重组序列输入到TCN-LSTM组合模型中,利用TCN模型提取特征并构建序列的特征向量,再基于LSTM模型对其进行训练及预测。最后把全部预测值进行相加得到完整的预测负荷值。通过使用欧洲某地真实负荷数据进行验证。结果表明:所提算法与其他常见的预测算法相比具有更高的预测精度,可为负荷预测等研究工作提供相关参考。  相似文献   

8.
为更充分挖掘多元负荷序列间的有效信息,从而提高预测精度,提出了一种集成贝叶斯超参数优化算法、注意力机制的长期和短期时间序列网络(long and short-term time-series network with attention,LSTNet-attention)以及误差修正的短期负荷预测模型。首先,构建基于贝叶斯优化的LSTNet-attention模型进行初步预测,利用贝叶斯算法优化模型多个结构参数,降低人工设置参数的随机性,并通过注意力机制合理分配特征权重;然后,通过基于贝叶斯参数优化的极端梯度提升算法(extreme gradient boosting,XGBoost)误差修正模型来挖掘初步预测误差序列中潜在、未被利用的有效信息,进行误差预测和修正,进而得到最终的预测结果。通过使用澳大利亚某地真实负荷数据进行实证分析,实验结果表明,所提预测模型相较于其它模型具有更好的预测效果,可为负荷预测等工作提供一定参考。  相似文献   

9.
为进一步提高短期电力负荷的预测精度,需要更深层次发掘负荷数据中隐藏的非线性关系.提出一种基于信号分解技术的二次模态分解的长短期记忆神经网络(long short-term memory network,LSTM)用于电力负荷的短期预测.所提算法先对原始负荷序列进行自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN),再将CEEMDAN分解后分量中的强非平稳分量进行变分模态分解(variational mode decomposition,VMD),同时用中心频率法对VMD分解个数进行优化,然后将两次分解后得到的负荷子序列送入LSTM中进行预测,并将所得分量预测结果进行叠加.结果表明,本文所提方法对短期电力负荷预测结果精度和模型性能都有较大提升.  相似文献   

10.
为提高燃气负荷预测的精度,分析了燃气小时负荷的变化规律和影响因素,建立了燃气小时负荷预测模型,采用具有输出-输入反馈机制的改进Elman(OIF Elman)网络对燃气小时负荷进行预测.与传统的Elman网络比较,OIF Elman网络不仅计入了隐层节点的反馈,而且考虑输出层节点的反馈,以便从有限的训练样本中获得更多的信息.预测结果表明,在样本点较少时,无论在训练速度上,还是在预测精度上,OIF Elman网络明显优于Elman网络.OIF Elman网络提高了网络的泛化能力,既降低了对训练样本个数的需求,又能提高预测精度,在燃气负荷预测中得到成功的应用.  相似文献   

11.
为了解决高速网络取证的证据完整性问题,提出了经济的可扩展模型,提出一种新的基于网络负载容量的负载均衡策略.该算法通过动态反馈和预测机制得到证据捕获端的处理能力,以一个会话为分配单位,将网络数据包分发给负载容量最大的捕获端.实验结果表明,该系统的扩展性,可以满足当前大流量网络的需求.  相似文献   

12.
基于数据挖掘技术的负荷预测模型   总被引:4,自引:0,他引:4  
为有效选取预测变量和训练模式、提高预测精度,提出了一个基于数据挖掘技术的负荷预测模型.该模型首先利用粗集理论和遗传算法选取与负荷相关的预测变量,再选取与预测日相似的训练模式,最后用神经网络对负荷进行预测.实际运行结果表明将该模型应用于电力系统负荷预测是可行的,其与传统的神经网络预测模型相比具有更高的预测精度.  相似文献   

13.
基于C/S模式的嵌入式无线数据处理系统是在嵌入式平台上开发的一种提供服务器/客户端模式的数据处理系统,有多个手持客户终端通过无线方式发送数据到服务器端进行统一处理.本文介绍了该系统的总体设计、几大组成模块与应用方式.  相似文献   

14.
在燃气负荷预测中,由于日负荷的不稳定,仅以历史负荷为训练样本得到的人工神经网络难以满足日预测的精度要求。提出一种小波分析与BP神经网络相结合的预测方法。首先,将历史负荷序列进行小波分解成概貌序列和细节序列,并在此基础上利用概貌序列、细节序列,以及指数平滑和温度等多种因素训练BP神经网络,预测出未来燃气的日负荷。最后,对...  相似文献   

15.
采用VisualBasic软件开发工具设计‘并实现了大学物理实验数据处理系统。主要介绍了本系统的构想来源、理论依据、实现手段和所达到的效果。在教学中的应用表明,本系统具有方便快捷、准确度高等特点。  相似文献   

16.
虚拟仪器系统是目前工业测试技术中新兴的系统,本文针对人工增雨火箭发动机试验数据设计了一种功能强大的数据处理系统,详细介绍了基于LabWindows平台利用C语言进行仪器程序设计的方法,利用不同的软件模块实现不同功能,开发成本低、开发周期短、升级和维护容易,而且用户可以根据需要进行扩展,方便实现人机交互。  相似文献   

17.
基于改进Elman网络的动态系统测量数据检验方法   总被引:8,自引:0,他引:8  
为了提高动态系统测量数据的准确性,提出了基于改进Elman网络的动态系统测量数据检验方法.采用一步前预测方法构造网络的训练样本,用带自适应学习率的动态BP算法进行网络的训练,通过训练后的网络对各测量参数进行估计,实现测量数据的在线检验.对某电厂CCS系统进行了仿真试验,结果表明该方法可避免形成简单的一一对应映射,能正确获取系统动态特性,具有较强的降噪能力,能够正确辨识出测量数据中存在的不良值,提高了系统监测的可靠性和健壮性.  相似文献   

18.
为了克服传统神经网络预测方法在网络结构设计和收敛效果等方面存在的缺陷。提出了一种进行电力系统负荷预测的新算法———人工免疫算法。该算法是根据高等动物免疫系统的机理而设计的,将目标函数和一部分不等式约束条件作为抗原,将搜索空间的解作为抗体,依据抗原与抗体的结合力以及抗体之间的结合力对解进行选择,通过抗体之间的相互激励作用提高了最优点附近的搜索效率,通过记忆细胞对抗体的抑制作用有效地摆脱局部最优点。应用该模型于阜新地区负荷预测的实例中,结果表明,该模型与传统的神经网络预测方法相比具有较强的自适应能力和较好的效果。  相似文献   

19.
根据电力负荷的主要影响因素,考虑了休息日和气候因素的影响,建立了基于粒子群算法(PSO)的级联网络短期负荷预测模型.通过粒子群算法对级联网络的训练进行优化,提高模型的运算速度.结果表明,该方法预测精度较高,效果较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号