首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When attempting to assess the strengths and weaknesses of various principles in their potential role of guiding the formulation of a theory of quantum gravity, it is crucial to distinguish between principles which are strongly supported by empirical data – either directly or indirectly – and principles which instead (merely) rely heavily on theoretical arguments for their justification. Principles in the latter category are not necessarily invalid, but their a priori foundational significance should be regarded with due caution. These remarks are illustrated in terms of the current standard models of cosmology and particle physics, as well as their respective underlying theories, i.e., essentially general relativity and quantum (field) theory. For instance, it is clear that both standard models are severely constrained by symmetry principles: an effective homogeneity and isotropy of the known universe on the largest scales in the case of cosmology and an underlying exact gauge symmetry of nuclear and electromagnetic interactions in the case of particle physics. However, in sharp contrast to the cosmological situation, where the relevant symmetry structure is more or less established directly on observational grounds, all known, nontrivial arguments for the “gauge principle” are purely theoretical (and far less conclusive than usually advocated). Similar remarks apply to the larger theoretical structures represented by general relativity and quantum (field) theory, where – actual or potential – empirical principles, such as the (Einstein) equivalence principle or EPR-type nonlocality, should be clearly differentiated from theoretical ones, such as general covariance or renormalizability. It is argued that if history is to be of any guidance, the best chance to obtain the key structural features of a putative quantum gravity theory is by deducing them, in some form, from the appropriate empirical principles (analogous to the manner in which, say, the idea that gravitation is a curved spacetime phenomenon is arguably implied by the equivalence principle). Theoretical principles may still be useful however in formulating a concrete theory (analogous to the manner in which, say, a suitable form of general covariance can still act as a sieve for separating theories of gravity from one another). It is subsequently argued that the appropriate empirical principles for deducing the key structural features of quantum gravity should at least include (i) quantum nonlocality, (ii) irreducible indeterminacy (or, essentially equivalently, given (i), relativistic causality), (iii) the thermodynamic arrow of time, (iv) homogeneity and isotropy of the observable universe on the largest scales. In each case, it is explained – when appropriate – how the principle in question could be implemented mathematically in a theory of quantum gravity, why it is considered to be of fundamental significance and also why contemporary accounts of it are insufficient. For instance, the high degree of uniformity observed in the Cosmic Microwave Background is usually regarded as theoretically problematic because of the existence of particle horizons, whereas the currently popular attempts to resolve this situation in terms of inflationary models are, for a number of reasons, less than satisfactory. However, rather than trying to account for the required empirical features dynamically, an arguably much more fruitful approach consists in attempting to account for these features directly, in the form of a lawlike initial condition within a theory of quantum gravity.  相似文献   

2.
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these resources include at least all local operations and classical communication. This approach is contrasted with the well-known approaches to holism in terms of supervenience. The criterion for holism proposed here involves a shift in emphasis from ontology to epistemology. I apply this epistemological criterion to classical physics and Bohmian mechanics as represented on a phase and configuration space respectively, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum operations as completely positive trace non-increasing maps. Furthermore, I provide an interesting example from which one can conclude that quantum mechanics is holistic in the above mentioned sense, although, perhaps surprisingly, no entanglement is needed.  相似文献   

3.
Conclusion The advent of the general theory of relativity was so entirely the work of just one person — Albert Einstein — that we cannot but wonder how long it would have taken without him for the connection between gravitation and spacetime curvature to be discovered. What would have happened if there were no Einstein? Few doubt that a theory much like special relativity would have emerged one way or another from the researchers of Lorentz, Poincaré and others. But where would the problem of relativizing gravitation have led? The saga told here shows how even the most conservative approach to relativizing gravitation theory still did lead out of Minkowski spacetime to connect gravitation to a curved spacetime. Unfortunately we still cannot know if this conclusion would have been drawn rapidly without Einstein's contribution. For what led Nordström to the gravitational field dependence of lengths and times was a very Einsteinian insistence on just the right version of the equality of inertial and gravitational mass. Unceasingly in Nordström's ear was the persistent and uncompromising voice of Einstein himself demanding that Nordström see the most distant consequences of his own theory.  相似文献   

4.
I attempt a reconstruction of Kant’s version of the causal theory of time that makes it appear coherent. Two problems are at issue. The first concerns Kant’s reference to reciprocal causal influence for characterizing simultaneity. This approach is criticized by pointing out that Kant’s procedure involves simultaneous counterdirected processes—which seems to run into circularity. The problem can be defused by drawing on instantaneous processes such as the propagation of gravitation in Newtonian mechanics. Another charge of circularity against Kant’s causal theory was leveled by Schopenhauer. His objection was that Kant’s approach is invalidated by the failure to deliver non-temporal criteria for distinguishing between causes and effects. I try to show that the modern causal account has made important progress toward a successful resolution of this difficulty. The fork asymmetry, as based on Reichenbach’s principle of the common cause, provides a means for the distinction between cause and effect that is not based on temporal order (if some preconditions are realized).  相似文献   

5.
Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. One popular strategy involves arguing that branching selves introduce a new kind of subjective uncertainty. I argue here that the variants of this strategy in the literature all fail, either because the uncertainty is spurious, or because it is in the wrong place to yield probabilistic predictions. I conclude that uncertainty cannot be the ground for probability in Everettian quantum mechanics.  相似文献   

6.
I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie–Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general view of inter-theoretic reduction in physics that I have elaborated elsewhere, which differs from the oversimplified picture that treats reduction as a matter of simply taking limits. This interpretation-neutral account rests on a general three-pronged strategy for reduction between quantum and classical theories that combines decoherence, an appropriate form of Ehrenfest׳s Theorem, and a decoherence-compatible mechanism for collapse. It also incorporates a novel argument as to why branch-relative trajectories should be approximately Newtonian, which is based on a little-discussed extension of Ehrenfest׳s Theorem to open systems, rather than on the more commonly cited but less germane closed-systems version. In the Conclusion, I briefly suggest how the strategy for quantum-classical reduction described here might be extended to reduction between other classical and quantum theories, including classical and quantum field theory and classical and quantum gravity.  相似文献   

7.
A theorem due to Geroch and Jang (1975) provides a sense in which the geodesic principle has the status of a theorem in General Relativity. I have recently shown that a similar theorem holds in the context of geometrized Newtonian gravitation (Newton–Cartan theory) (Weatherall, J.O., 2011). Here I compare the interpretations of these two theorems. I argue that despite some apparent differences between the theorems, the status of the geodesic principle in geometrized Newtonian gravitation is, mutatis mutandis, strikingly similar to the relativistic case.  相似文献   

8.
Historical research on John Dalton has been dominated by an attempt to reconstruct the origins of his so-called “chemical atomic theory”. I show that Dalton’s theory is difficult to define in any concise manner, and that there has been no consensus as to its unique content among his contemporaries, later chemists, and modern historians. I propose an approach which, instead of attempting to work backward from Dalton’s theory, works forward, by identifying the research questions that Dalton posed to himself and attempting to understand how his hypotheses served as answers to these questions. I describe Dalton’s scientific work as an evolving set of puzzles about natural phenomena. I show how an early interest in meteorology led Dalton to see the constitution of the atmosphere as a puzzle. In working on this great puzzle, he gradually turned his interest to specifically chemical questions. In the end, the web of puzzles that he worked on required him to create his own novel philosophy of chemistry for which he is known today.  相似文献   

9.
Along with exploring some of the necessary conditions for the chemistry of our world given what we know about quantum mechanics, I will also discuss a different reductionist challenge than is usually considered in debates on the relationship of chemistry to physics. Contrary to popular belief, classical physics does not have a reductive relationship to quantum mechanics and some of the reasons why reduction fails between classical and quantum physics are the same as for why reduction fails between chemistry and quantum physics. However, a neoreductionist can accept that classical physics has some amount of autonomy from quantum mechanics, but still try to maintain that classical+quantum physics taken as a whole reduces chemistry to physics. I will explore some of the obstacles lying in the neoreductionist's path with respect to quantum chemistry and thereby hope to shed more light on the conditions necessary for the chemistry of our world.  相似文献   

10.
In this paper I examine the notion and role of metaphors and illustrations in Maxwell's works in exact science as a pathway into a broader and richer philosophical conception of a scientist and scientific practice. While some of these notions and methods are still at work in current scientific research—from economics and biology to quantum computation and quantum field theory—, here I have chosen to attest to their entrenchment and complexity in actual science by attempting to make some conceptual sense of Maxwell's own usage; this endeavour includes situating Maxwell's conceptions and applications in his own culture of Victorian science and philosophy. I trace Maxwell's notions to the formulation of the problem of understanding, or interpreting, abstract representations such as potential functions and Lagrangian equations. I articulate the solution in terms of abstract-concrete relations, where the concrete, in tune with Victorian British psychology and engineering, includes the muscular as well as the pictorial. This sets the basis for a conception of understanding in terms of unification and concrete modelling, or representation. I examine the relation of illustration to analogies and metaphors on which this account rests. Lastly, I stress and explain the importance of context-dependence, its consequences for realism-instrumentalism debates, and Maxwell's own emphasis on method.  相似文献   

11.
This essay examines Friedman׳s recent approach to the analysis of physical theories. Friedman argues against Quine that the identification of certain principles as ‘constitutive’ is essential to a satisfactory methodological analysis of physics. I explicate Friedman׳s characterization of a constitutive principle, and I evaluate his account of the constitutive principles that Newtonian and Einsteinian gravitation presuppose for their formulation. I argue that something close to Friedman׳s thesis is defensible.  相似文献   

12.
‘Holographic’ relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard ׳t Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic ‘AdS/CFT’ duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton׳s law of gravitation can be related holographically to the ‘thermodynamics of information’ on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde׳s scheme straightforwardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and gravity there as well.  相似文献   

13.
14.
I show how quantum mechanics, like the theory of relativity, can be understood as a ‘principle theory’ in Einstein's sense, and I use this notion to explore the approach to the problem of interpretation developed in my book Interpreting the Quantum World.  相似文献   

15.
Those looking for holism in contemporary physics have focused their attention primarily on quantum entanglement. But some gauge theories arguably also manifest the related phenomenon of nonseparability. While the argument is strong for the classical gauge theory describing electromagnetic interactions with quantum “particles”, it fails in the case of general relativity even though that theory may also be formulated in terms of a connection on a principal fiber bundle. Anandan has highlighted the key difference in his analysis of a supposed gravitational analog to the Aharonov–Bohm effect. By contrast with electromagnetism in the original Aharonov–Bohm effect, gravitation is separable and exhibits no novel holism in this case. Whether the nonseparability of classical gauge theories of nongravitational interactions is associated with holism depends on what counts as the relevant part–whole relation. Loop representations of quantized gauge theories of nongravitational interactions suggest that these conclusions about holism and nonseparability may extend also to quantum theories of the associated fields.  相似文献   

16.
The view that the fundamental kind properties are intrinsic properties enjoys reflexive endorsement by most metaphysicians of science. But ontic structural realists deny that there are any fundamental intrinsic properties at all. Given that structuralists distrust intuition as a guide to truth, and given that we currently lack a fundamental physical theory that we could consult instead to order settle the issue, it might seem as if there is simply nowhere for this debate to go at present. However, I will argue that there exists an as-yet untapped resource for arguing for ontic structuralism – namely, the way that fundamentality is conceptualized in our most fundamental physical frameworks. By arguing that physical objects must be subject to the ‘Goldilock's principle’ if they are to count as fundamental at all, I argue that we can no longer view the majority of properties defining them as intrinsic. As such, ontic structural realism can be regarded as the most promising metaphysics for fundamental physics, and that this is so even though we do not yet claim to know precisely what that fundamental physics is.  相似文献   

17.
Objectiveprobability in quantum mechanics is often thought to involve a stochastic process whereby an actual future is selected from a range of possibilities. Everett's seminal idea is that all possible definite futures on the pointer basis exist as components of a macroscopic linear superposition. I demonstrate that these two conceptions of what is involved in quantum processes are linked via two alternative interpretations of the mind-body relation. This leads to a fission, rather than divergence, interpretation of Everettian theory and to a novel explanation of why a principle of indifference does not apply to self-location uncertainty for a post-measurement, pre-observation subject, just as Sebens and Carroll claim. Their Epistemic Separability Principle is shown to arise out of this explanation and the derivation of the Born rule for Everettian theory is thereby put on a firmer footing.  相似文献   

18.
Bell appealed to the theory of relativity in formulating his principle of local causality. But he maintained that quantum field theories do not conform to that principle, even when their field equations are relativistically covariant and their observable algebras satisfy a relativistically motivated microcausality condition. A pragmatist view of quantum theory and an interventionist approach to causation prompt the reevaluation of local causality and microcausality. Local causality cannot be understood as a reasonable requirement on relativistic quantum field theories: it is unmotivated even if applicable to them. But microcausality emerges as a sufficient condition for the consistent application of a relativistic quantum field theory.  相似文献   

19.
This paper examines Bub's interpretation of the foundational significance of the theorem of Clifton, Bub, and Halvorson (CBH) which characterizes quantum theories in terms of information-theoretic constraints. Bub argues that quantum theory must be re-conceived of as a principle theory of information where information is a new physical primitive, to the exclusion of hidden variable theories. I will argue, contrary to Bub, that the CBH theorem cannot be used to exclude hidden variables theories. Drawing inspiration from Bub, I sketch an alternative conception of quantum mechanics as a theory of information, but one which embraces all empirically equivalent quantum theories.  相似文献   

20.
The existence of unitarily inequivalent representations in quantum field theory has been presented as a serious problem for structural realism. In this paper I explore two possible responses. The first involves adopting Wallace's ‘naïve Lagrangian’ interpretation of QFT and dismissing the generation of inequivalent representations as either a mathematical artefact or as non-pathological. The second takes up Ruetsche's ‘Swiss Army Knife’ approach and understands the relevant structure as spanning a range of possibilities. Both options present interesting implications for structural realism and I shall also consider related issues to do with underdetermination, the significance of spontaneous symmetry breaking and how we should understand superselection rules in the context of quantum statistics. Finally, I shall suggest a way in which these options might be combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号