首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究了不同均匀化温度对Nb-Ti-Si-Cr基超高温合金组织和元素分布的影响;结果发现随着高温均匀化处理温度的升高,硅化物的组织形貌由共晶首先转变为细长条状,随后长大为长条状,Laves相Cr_2Nb的形貌由针状转变为粗大的不规则形貌,最后溶解。随着高温均匀化温度的升高,Ti在初生相Nbss中的含量呈现升高的趋势,而Cr在初生相Nbss中的含量呈现先升高后降低的趋势。  相似文献   

2.
The effects of MoO3thin buffer layer on charge carrier injection and extraction in inverted configuration ITO/ZnO/MEH-PPV(poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene))/MoO3(0,5 nm)/Ag hybrid solar cells are investigated by capacitance–voltage measurement under dark and light illumination conditions.The efficiency of charge carrier injection and extraction is enhanced by inserting 5 nm MoO3thin layer,resulting in better device performances.Charge carrier transport of the whole device is improved and the interface energy barrier is reduced by inserting 5 nm MoO3thin buffer layer.The device fill factor is increased from 54.1%to 57.5%after modifying 5 nm MoO3.Simulations and experimental results consistently show that in the forward voltage under dark,the device with the 5 nm MoO3thin layer modification generates larger value of capacitance than the device without MoO3layer.While under illumination,the device with the 5 nm MoO3layer generates smaller value of capacitance than the device without the 5 nm MoO3layer in the bias region of reverse and before the peak position of maximum capacitance(VCmax).The underlying mechanism of the MoO3anode buffer layer on device current density–voltage characteristics is discussed.  相似文献   

3.
The phase co mpositions, microstructure and especi ally phase i nterfaces in the as-cast and heat-treated Nb– Ti–Si based ultrahigh temperature alloys have been investigated. It is shown that β(Nb,X)5Si3 and γ(Nb,X)5Si3 are the primary p hase s in the Nb–22Ti–16Si–5Cr–5Al (S1) (at%) and Nb–20Ti–16Si–6C r–4Al–5Hf–2B–0.06Y (S2) (at% ) alloys, respectively. The Nb solid solution (Nbss) is the primary phase in Nb–22Ti–14Si–5Hf–3Al–1. 5B –0.0 6Y (S3) (at%) alloy . An orientation relationship between Nbss and γ(Nb,X)5Si3 was determine d to be (1-10)Nb//(101-0)γ and [111]Nb//[0001]γ in the as-cast S2 and S3 alloys. Some original β(Nb,X)5Si3 transfor med into α(Nb,X)5Si3 because Al and Cr diffused from the β(Nb,X)5Si3 to Nbss during heattreatment at 1500 °C for 50 h in the S1 alloy. Mean while, Ti diffused from Nbss to β(Nb,X)5Si3, which induced a Ti to generate near the interface between Nbss and Ti-rich β(Nb,X)5Si3. The orientation relationship between the newl y-formed a Ti and previous Nbss was (110 )Nb//(1-10-1) αTi and [001]Nb//(12-3-1)αTi. Among the ( Nb,X)5Si3 phases , the contents o f Cr and Al in β(Nb,X)5Si3 are n earl y the same as those in γ(Nb,X)5Si3 but obviously hi gher than those in the α(Nb,X)5Si3, where as the content of Si in α(Nb,X)5Si3 is nearly the same a s that in γ(Nb,X)5Si3 but higher than that in the β(Nb,X)5Si3  相似文献   

4.
The purpose of this paper is to estimate the fatigue crack growth threshold of a high-Nb TiAl alloy at the different temperatures based on scanning electron microscopy (SEM) in-situ observation. The results indicated that the fatigue crack growth threshold △Kth of a nearly lamellar high-Nb TiAl alloy with 8% Nb content at room temperature and 750℃ was determined as 12.89 MPa.m^1/2 and 8.69 MPa.m^1/2, respectively. The effect of the elevated temperature on the fatigue crack growth threshold cannot be ignored. At the same time, the early stage of fatigue crack propagation exhibited multicrack initiation and bridge-link behavior.  相似文献   

5.
The hot deformation behavior of Ti-42.9Al-4.6Nb–2Cr (at. %) was investigated by isothermal compression tests at the deformation temperature range of 1373–1573 K, strain rate range of 0.001–1.0 s−1, up to the strain of 0.69. The flow stress test results of Ti-42.9Al-4.6Nb–2Cr showed negative temperature and positive strain rate sensitivity. Besides, strain had a great effect on the hot deformation behavior of Ti-42.9Al-4.6Nb–2Cr. Kinetic analysis was adopted to assess the hot workability of Ti-42.9Al-4.6Nb–2Cr via apparent activation energy (Q) of hot deformation, strain-rate sensitivity index (m) and strain hardening index (n). The Q value varied from 607.1 ± 0.7 kJ·mol−1 to 512.6 ± 10.8 kJ mol−1 with the increasing of strain from 0.1 to 0.6. The effect of strain on the Q value at the deformation temperatures below 1473 K was mainly related to dynamic recrystallization of γ phase and kinking of γ lamellae, while the Q value at the deformation temperature above 1473 K might be linked to γ→α phase transformation and DRV of α phase. Based on the kinetic analysis, strain-compensated Arrhenius model and Hensel-Spittel model were successfully established to predict the hot workability (flow stress). Average absolute relative errors of established strain-compensated Arrhenius model and Hensel-Spittel model were 7.52% and 11.95%, respectively. Moreover, both established constitutive models can be extrapolated for predicting the flow stress of Ti-42.9Al-4.6Nb–2Cr to larger strain levels.  相似文献   

6.
A series of polymer solar cells (PSCs) based on poly (diketopyrrolopyrrole-terthiophene) (PDPP3T) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as active layer were fabricated to investigate the effect of 1,8- diiodooctane (DIO) on the performance of PSCs. The power conversion efficiency (PCE) of PSCs was increased from 3.77 % to 4.37 % for the cells with DIO additive. The underlying reason may be attributed to that DIO additive could make PC71BM more dispersive in the active layer, forming a better bicontinuous interpenetrating network for excition dissociation and charge carrier transport. There- fore, the short circuit current density (Jsc) and fill factor (FF) was increased from 8.25 to 9.18 mA/cm2 and from 67.2 % to 70.0 % for the PSCs with DIO additive compared with PSCs without DIO additive.  相似文献   

7.
In this work, pure Nb, Nb5Si3 and Laves Cr2Nb compound powders were used as raw materials to prepare Nb-Si-Cr ternary alloys by spark plasma sintering (SPS). A comprehensive estimation of the microstructure and properties, including room temperature fracture toughness, high temperature strength and oxidation resistance, of the Nb-Si-Cr ternary alloys as a function of the Nb/Nb5Si3/Cr2Nb phase volume fraction combinations was conducted. The results showed that Nb-Si-Cr ternary samples with the relative density larger than 98.42% were obtained by SPS processing, and the samples all consisted of Nb, Nb5Si3 and Cr2Nb phases that were distributed homogeneously. The fracture toughness KQ of the Nb/Nb5Si3/Cr2Nb microstructure, which was dominated by the Nb phase, naturally increased with the Nb fraction. As expected, the room-temperature Vickers hardness and the high-temperature strength of the bulk alloys increased monotonically with the increasing of the stiffening Nb5Si3 fraction. Interestingly, the binary Cr2Nb phase played a positive role in the high temperature strength and oxidation resistance. Finally, the fracture modes of the typical Nb/Nb5Si3/Cr2Nb microstructures under bending and compression conditions at room and high temperatures as well as the oxidation mechanism are described and discussed.  相似文献   

8.
To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb-Si-based alloy substrate, the coating was oxidized at 1250℃ for 5, 10, 20, 50, or 100 h. The interfacial diffusion between the (Nb,X)(Si,Ge)2 (X=Ti, Cr, Hf) coating and the Nb-Si based alloy was also examined. The transitional layer is composed of (Ti,Nb)5(Si,Ge)4 and a small amount of (Nb,X)5(Si,Ge)3. With increasing oxidation time, the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate, which obeys a parabolic rate law. The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm·h-1/2. Moreover, the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.  相似文献   

9.
The microstructures and tensile behaviours of cerium (Ce) doped polycrystalline Co-9Al-4.5W-4.5Mo-2Ta-0.02B alloys (doped 0.05 and 0.2 at.% Ce) at room temperature (RT) and 600–800 °C were investigated. In-suit tensile test under SEM was conducted to understand the deformation and damage mechanisms at RT. Aged at 800 °C for 50 h, the 0.05Ce alloy consisted of a Co solid-solution matrix (γ-CoSS) and nano-scale cuboidal γ′-Co3(Al, W) precipitates, while for the 0.2Ce alloy, κ-Co3(W, Mo) precipitates and γ′-depleted zone were present at the grain boundaries in addition to the γ/γ′ microstructure. The 0.05Ce alloy exhibited flow stress anomalies at 700 °C. With higher Σ1∼3 boundary fraction and cleaned-up grain boundary, the 0.05Ce alloy always showed greater strength and elongation than the 0.2 Ce alloy with the grain boundary precipitates at temperatures up to 800 °C. Doped 0.05 at.% Ce made the Co-9Al-4.5W-4.5Mo-2Ta-0.02B alloy have an excellent elongation of 6.1% at 700 °C, owing to a mixed transgranular dimple plus intergranular cleavage fracture. The slip bands transferring through the low-angle grain boundary and slipping of the γ′-Co3(Al, W) in the 0.5Ce alloy resulted in excellent ductility of 20.4% at RT.  相似文献   

10.
This paper deals with microstructural evolutions and mechanical properties of Nb-Si binaries containing dual-phase Nb/Nb5Si3 with Nb to Nb5Si3 fraction ratios of 90:10,80:20,70:30 and 50:50,prepared by spark plasma sintering(SPS).Dense Nb/Nb5Si3 samples with a relative density larger than 99.5% were obtained by SPS processing.The SPS samples consist of the Nb and Nb5Si3 phases with less than 3% fraction of NbO oxide.Hv at room temperature,and compressive strength at 1150℃ and 1250 1C of the bulk SPS alloys increase monolithically by enhancing fraction of the stiffening Nb5Si3 phase.For example,0.2% yield strength,σ0.2,increases from 175 MPa to 420 MPa at 1150℃ and from 110 MPa to 280 MPa at 1250℃,when the Nb5Si3 fraction increases from 10% to 50%.It is interesting that the fracture toughness,KQ,of the bulk SPS samples seems not to be sensitive to phase fraction.Heat treatment,however,plays a key role on the KQ as compared with that of the as-sintered state,at the corresponding Nb5Si3 fraction and considerably improves the KQ by about 100% for samples with the Nb5Si3 fractions of 10%-30%,and by about 50% for the sample with 50% Nb5Si3 fraction.  相似文献   

11.
We investigate the dark current mechanism for an unpassivated mid wavelength(MW) type II InAs/GaSb superlattice infrared photodetector by doing the variablearea diode tests. The bulk resistance-area product and the resistivity due to the surface current are determined to be17.72 X cm2 and 704.23 X cm at 77 K, respectively. It is found that for all the mesa sizes used, the dark current is dominated or predominated by the surface component, and with scaling back the mesa size, the surface current increases while the bulk component decreases. The activation energy is determined to be 145 meV for the temperature range around 140–280 K, while it is 6 meV when temperature is below 100 K. It is also found that the dark current is dominated by the generation-recombination current for the MW device when temperature is between140 and 280 K.  相似文献   

12.
(Zr41.2Ti13.8Cu12.5Ni10Be22.5)100?xNbx (at%, x=0 and 8) bulk metallic glasses (BMGs) were coated on the surface of Q195 steel wires by a continuous coating process. The potentiodynamic polarization tests of these BMGs were conducted in 3.5wt% NaCl aqueous solution. It is found that the addition of 8at% Nb into Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy results in the improvement of corrosion resistance with the pitting potential of ?52 mV, the open circuit potential of ?446 mV, and the corrosion current density of 9.86×10?6 mA/cm2. This may be attributed to that Nb is beneficial to passivate and stabilize Zr and Ti.  相似文献   

13.
Intra-particle mass and heat transfer plays an important role in performance of the exothermic fixed-bed reactor for an isopropanol-acetone-hydrogen chemical heat pump. In this work, an exothermic fixed-bed reactor model, taking into account the actual packing structure, is established in the commercial software Fluent. A 120° segment of a tube with tube-to-particle diameter ratio (n) of 4, where realistic particles are packed and set to porous media, is used to simulate the 3D external flow, concen- tration and temperature fields in the exothermic packed-bed reactor. The influence of catalyst particle diameter (dp) and micropore diameter (do) on the intra-particle temperature, species distribution, reaction rate and selectivity is dis- cussed. The appropriate dp and do are obtained. Simulation results showed that intra-particle temperature gradient is not obvious. Large dp and small do lead to remarkable gradient of reaction rate inside the catalyst particle and the decrease in the catalyst efficiency and reduce the acetone conversion and the selectivity in isopropanol. The optimal results reveal that the spherical catalyst with dp of 1 mm and dpore of 10 nm is appropriate for high-temperature acetone hydrogenation.  相似文献   

14.
Web-like ZnO nanostructures have been successfully synthesized using the potassium nitrate route at various temperatures to simplify conventional preparation methods. The structures and morphologies of the as-prepared products were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The results showed that the reaction temperature was an important parameter, and that there was a feedback effect between nano-structure and growth parameters, combined with in situ micro-calorimetry, the reaction rate constants of the three systems were found to have been: 2.43×10-6, 2.70×10-8 and 3.12×10-7s-1 respectively. Furthermore, based on the relationship governing the potential differences between nanoand bulk ZnO, thermodynamic functions of nano-ZnO such as standard molar entropy (Sm,ZnO(nano)), standard molar Gibbs free energy of formation (△rGm,ZnO(nano)), and standard molar enthalpy of formation (△rHm,ZnO(nano)) have been calculated by the electrochemical method.  相似文献   

15.
A high-throughput method was applied to study oxidation behavior of Nb-Si based alloy using composition spread alloy film as combinatorial libraries.An extended range of composition gradients of Nb-Si based alloy film was deposited by(multi)magnetron co-sputtering.The as-deposited film was composed of amorphous phase.Cr2 Nb,Nb5 Si3 and Nbss could be detected after annealing treatment.After oxidation at 1250℃ for 10 min and 20 min,the film composition space was di...  相似文献   

16.
宁华  李柳杰  王旭坡  郭进 《广西科学》2014,21(3):236-240
【目的】研究多个氮气分子吸附于Nb(100)表面的问题.【方法】采用基于密度泛函理论的总能计算方法研究Nb(100)表面吸附多个氮气分子。【结果】得到0.25,0.50,0.75覆盖度(ML)下氮气分子吸附Nb(100)表面的结构,能量,振动频率以及表面功函数等性质,并进一步讨论了氮气分子在Nb(100)表面吸附与分解的物理机制。【结论】吸附在Nb(100)表面的氮气分子容易发生解离,部分氮气分子以分子态的形式吸附,而部分氮气分子则分解成原子吸附于铌表面。  相似文献   

17.
This paper reports new zircon U-Pb ages,and Hf isotope and whole-rock major and trace element data for Cambrian plagiogranites from the Tuobeiling ophiolite in central Qiangtang,Tibetan Plateau.Zircon SIMS and LAICP-MS U-Pb dating of the plagiogranites yield weighted mean ages of 504.8±4.2 and 491.6±1.5 Ma,respectively.The zircons from plagiogranites exhibit positive eHf(t)values(ranging from 11.46 to 15.16),indicating that the plagiogranites are derived from depleted mantle.These plagiogranites are characterized by high SiO2and Na2O,low K2O,low REE contents,and flat REE distribution patterns.These rocks have geochemical compositions typical of oceanic plagiogranite and,considered along with their petrography and field relationships,are interpreted to have derived from anatexis of hydrated amphibolites by ductile shearing during transports of the oceanic crust.The formation age of such type of plagiogranite is slightly younger than that of the associated section of oceanic crust.Thus the new results from these plagiogranites suggest that the Longmu Co–Shuanghu–Lancangjiang ocean had probably opened before the Middle Cambrian.  相似文献   

18.
Accurate evaluation of dark respiration of plants is important for estimation of the plant carbon budget.The response of leaf dark respiration of winter wheat to changes in CO 2 concentration and temperature was studied,using an open top chamber during 2011-2012,to understand how leaf dark respiration of winter wheat will respond to climate change.The results indicated that leaf dark respiration decreased linearly with increased CO2 concentration.Dark respiration decreased by about 11% under 560 μmol mol-1 CO2 compared with that under 390 μmol mol-1 CO2.Leaf dark respiration showed an exponential relationship with temperature,and the temperature constant(Q10) was close to 2.Moreover,the responses of leaf dark respiration to CO concentration and temperature were independent.A leaf dark respiration model based on CO2 concentration and temperature responses was developed.This model provides a method for estimation of the leaf dark respiration rate of winter wheat under future climate change and guidance for establishment of crop carbon countermeasures.  相似文献   

19.
The GaInP/GaAs/Ge triple-junction tandem cells with a conversion efficiency of 27.1% were fabricated using metalorganic chemical vapor deposition (MOCVD) technique. Temperature dependence of the spectral response measurements of the GaInP/GaAs/Ge tandem cell was performed by a quantum effi-ciency system at temperatures ranging from 25℃ to 160℃. The red-shift phenomena of the absorption limit for all subcells were observed with increasing temperature, which is dued to the energy gap nar-rowing with temperature. The short-circuit current densities (Jsc)of GaInP, GaAs and Ge subcells at room temperature calculated based on the spectral response data were 12.9, 13.7 and 17 mA/cm2, re-spectively. The temperature coefficient of Jsc for the tandem cell was determined to be 8.9 mA/(cm2·℃), and the corresponding temperature coefficient of the open-circuit voltage deduced from the se-ries-connected model was -6.27 mV/℃.  相似文献   

20.
The NiAl based materials including NiAl-TiC-Al2O3 composite,NiAl-Cr(Mo)-Hf-Ho eutectic alloy and NiAl-Cr(Mo)-CrxSy in situ composite were fabricated and their wear properties were tested at different temperatures.The results revealed that the NiAl-TiC-Al2O3 composite,NiAl-Cr(Mo)-Hf-Ho eutectic alloy and NiAl-Cr(Mo)-CrxSy in situ composite exhibited the excellent wear properties between 700℃ and 900℃.The microstructure observations exhibited that the self-lubricant films formed on the worn surfaces during the dry sliding test at high temperature,which decreased the wear rate and friction coefficient significantly.TEM observation on the self-lubricant film revealed that it was mainly comprised by ceramic amorphous and nanocrystalline.Compared with the NiAl-TiC-Al2O3 composite,the NiAl-Cr(Mo)-CrxSy in situ composite has lower friction coefficient at low temperature.Such phenomena may be ascribed to the addition of sulfide which contributes much to the formation of self-lubricant,and moreover the TiC addition increase the strength of NiAl based material and its wear resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号