首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
提出一种求解无约束最优化问题的新的混合算法Powell搜索法和惯性权重非线性调整局部收缩微粒群算法的混合算法.该算法不需要计算梯度, 容易应用于实际问题中.通过对微粒群算法的修正, 使混合算法具有更加精确和快速的收敛性.首先利用20个基准测试函数进行仿真计算比较, 计算结果表明, 新混合算法在求解质量和收敛速率上都优于其他算法(PSO, GPSO和NM-PSO算法).其次, 将新混合算法和最新的各种协同PSO算法进行分析比较.结果表明, 新混合算法在解的搜索质量、效率和关于初始点的鲁棒性方面都远优于其他算法.  相似文献   

2.
为了改善标准的微粒群优化算法(SPSO)的性能,给出一个新的速度更新策略——局部收缩策略,且把信赖域技术引入PSO算法中进行惯性权重的动态调整,提出一个新的微粒群优化算法——基于信赖域技术的局部收缩的微粒群算法.新算法(NPSO)保持了PSO算法结构简单的特点,改善了PSO算法的全局寻优能力,提高了算法的收敛速度和计算精度.利用10个测试函数测试新算法的性能,并分别与SPSO、与混沌相结合的微粒群算法(PSOC)、具有被动聚集的微粒群算法(PSOPC)、SPSO的全局版本及带有收缩因子的微粒群算法(CPSO)比较,实验结果表明,新算法(NPSO)大大地改善了实例测试函数的表现.    相似文献   

3.
提出一种求解无约束最优化问题的新的混合算法Powell搜索法和惯性权重非线性调整局部收缩微粒群算法的混合算法. 该算法不需要计算梯度, 容易应用于实际问题中. 通过对微粒群算法的修正, 使混合算法具有更加精确和快速的收敛性. 首先利用20个基准测试函数进行仿真计算比较, 计算结果表明, 新混合算法在求解质量和收敛速率上都优于其他算法(PSO, GPSO和NM PSO算法). 其次, 将新混合算法和最新的各种协同PSO算法进行分析比较. 结果表明, 新混合算法在解的搜索质量、 效率和关于初始点的鲁棒性方面都远优于其他算法.  相似文献   

4.
廖璟  申群太 《科学技术与工程》2007,7(8):1628-16301656
针对基本粒子群算法易陷入局部极小点、搜索精度不高等缺点,在算法改进方面引用差分演化算法的变异操作提出了差分演化的PSO算法,并用matlab仿真证明该算法的可行性。  相似文献   

5.
微粒群算法(PSO算法)是模拟鸟类、鱼群等的群体智能行为的一种启发式全局优化技术.通过介绍微粒群优化算法的原理、算法流程、算法参数及其对算法性能的影响,给出了各种改进的微粒群算法形式以及研究现状,归纳了微粒群算法的国内外应用进展及研究方向.  相似文献   

6.
将小生境技术引入到微粒群优化算法之中,设计出一种小生境微粒群优化算法。该算法除了始终赋予微粒生命力,还将位置重叠的差适应值微粒在搜索空间重新启动。通过对4个常用测试函数进行优化计算,仿真结果表明小生境微粒群优化算法比基本微粒群优化算法具有更好的优化性能。  相似文献   

7.
针对典型的背包问题,给出一种基于微粒群算法的求解方法。经过数值实验测试和验证,微粒群算法有较好的性能。  相似文献   

8.
提出一个求解约束工程设计问题的新的混合算法——与可行基规则相结合的局部收缩微粒群算法。与惩罚函数法相比,可行基规则不需要额外的参数,且指引粒子迅速飞向可行域。利用3个工程设计问题进行仿真计算比较,仿真结果表明了新算法是求解约束工程设计问题的一个高效的算法。  相似文献   

9.
分段式微粒群优化算法   总被引:3,自引:0,他引:3  
提出一种分段式微粒群优化算法。该算法将所要搜索的区域分成若干段,首先在每一区段内搜索出区段的最优位置,然后将各区段的最优位置组成一微粒群,继续搜索全局最优位置。通过对5个常用标准测试函数进行优化计算,仿真结果表明:分段式微粒群优化算法能有效地搜索到全局最优解,具有比基本微粒群优化算法更快的搜索速度和更好的优化性能。  相似文献   

10.
提出一种两群替代微粒群优化算法(TSSPSO),并对算法参数进行分析和对算法方程进行修正。该方法将微粒分成飞行方向不同的两分群,其中一分群微粒朝着最优微粒飞行,另一分群微粒朝着相反方向飞行;飞行时,每一微粒不仅受到微粒本身飞行经验和本分群最优微粒的影响,还受到全群最优微粒的影响。搜索时,每一次迭代均以一定的替代率用一分群中若干优势微粒取代另一分群中相同数目的劣势微粒。对4种常用函数的优化问题进行测试并进行比较,结果表明:两群替代微粒群优化算法比基本微粒群优化算法更容易找到全局最优解,优化效率和优化性能明显提高。将两群替代微粒群优化算法用于常压塔汽油干点软测量,建立基于两群替代微粒群优化算法的汽油干点神经网络软测量模型,通过与实际工业数据的比较,表明基于两群替代微粒群神经网络的软测量模型精度高、性能好。  相似文献   

11.
近年来,一种新的基于种群优化的算法———粒子种群优化(PSO)算法,正受到人们的普遍关注。首先介绍了PSO原理及具体实现步骤,接着对各种常见PSO算法,例如原始算法、惯性权值算法、限制因子算法等进行了解释。在此基础上,对PSO算法典型模型的参数选择,如惯性权值、加权系数、最大速度等,进行了详细研究,并给出了实验结果,得出了相关结论,为今后参数的选择提供了参考。接着讨论了PSO在神经网络、模糊逻辑系统和进化计算等计算智能领域及其它工程领域的应用,最后给出了进一步的研究方向。  相似文献   

12.
把QPSO算法与模糊c-均值(FCM)算法相结合提出一种混合模糊聚类算法(QPSO—FCM),将FCM算法中基于梯度下降的迭代过程用新算法进行替代,能够在一定程度上克服FCM算法易陷入局部极小的缺陷,降低FCM算法的初值敏感度.通过典型的Wine的数据实验结果证明,改进后的新算法具有良好的收敛性,聚类效果也有一定的改善.  相似文献   

13.
梁树军 《科学技术与工程》2013,13(11):3109-3112
为了加快粒子群算法收敛速度、提高粒子群的全局优化效率和精确度从而避免陷入局部最优解,提出了一种改进型的基于质心的粒子群优化算法模型,该模型能有效地提高粒子群之间的合作和信息共享能力。仿真结果表明基于\"质心\"的改进型粒子群优化算法在收敛性方面具有显著优越性。  相似文献   

14.
房靖  高尚 《科学技术与工程》2007,7(11):2669-2671
Bezier曲线比较容易计算和稳定,它得到了广泛应用。在分析了Bezier曲线的基础上,提出了最短Bezier曲线问题,并利用粒子群优化算法解决该问题,最后给出了实例。  相似文献   

15.
为解决基于多核计算环境下的粒子群优化问题,提出一种面向多核计算的改进粒子群算法.通过引入多核设计模式和方法,分析传统粒子群算法中可以并行执行的部分,并根据已有的多核编程语言,在多核计算环境下,高效、并行地实现粒子群算法.通过实验验证了改进算法在多核计算环境下运行的有效性.  相似文献   

16.
作为一种新型智能算法,粒子群算法具有概念简单、易于实现等特点,但也存在容易陷入局部最优的缺点。为了尽可能找到问题的最优解,提高粒子群算法的收敛速度,提出一种带自适应飞行时间因子的粒子群算法,在算法中引入种群多样性和种群进化度两个参数,并根据这两个参数对算法性能的影响,让飞行时间因子随着这两个参数自适应改变。通过对4个基准函数的测试表明,改进后的粒子群算法较其他几种粒子群算法在收敛速度和收敛精度上都有一定提高。  相似文献   

17.
柳寅  马良  黄钰 《上海理工大学学报》2012,34(4):314-317,322
针对非线性函数优化问题,提出一种新型的模糊粒子群算法.该算法基于模糊控制器中输入输出的模糊化处理和粒子群寻优的特点.算法在Matlab 2008环境下编程实现,针对几个典型复杂的非线性函数进行优化测试.实现结果表明:模糊粒子群算法是一种简单有效的算法,具有良好的有效性和鲁棒性.  相似文献   

18.
为了更好地解决多目标优化问题,提出一种求解多目标优化问题的新型memetic算法.该算法利用微粒子群算法的全局搜索能力和同步启发式局部搜索相结合进行局部微调;利用基于模糊全局极值的概念处理种群中过早出现收敛以及解多样性保持等问题.通过进一步检测得出新算法的特点并展示其在多目标优化问题上的独立性和综合效应.同时应用新型算法对IEEE14节点标准电网进行无功优化计算.结果证明,该新型memetic算法具有很好的寻优能力,验证了该算法的有效性及科学性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号