首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
作者将支持向量机SVM方法用于车牌字符的识别.算法首先采用Gabor变换和外围轮廓结构特征提取的方法提取车牌字符图像的特征参数,然后采用提取的特征训练SVM分类器,再应用SVM分类器分类和判别车牌字符.实验表明这种方法具有良好的车牌识别效果,较强的鲁棒性,较大的应用价值.  相似文献   

2.
针对目前市场上使用的监控设备在雾霾天气下辨识精度和速度不足等问题,采用小波低频融合原理对采集到的图像预处理,并基于改进支持向量机算法对预处理后的车牌图像提取特征值。实验结果表明,改进后的车牌识别方法与传统方法相比,提高了辨别速度,减小了误识率,为雾天视频监控系统的研发提供了新的思路。  相似文献   

3.
通常情况下,很难用试卷扫描图像的像素灰度值来直接区分空白试卷和非空白试卷.应用支持向量机方法可以有效地识别空白试卷.建立了两个二维线性可分的支持向量机,一个是以图像像素灰度值列向量的标准差的最大值和行向量的标准差的最大值为特征的支持向量机1,另外一个是以图像像素灰度值列向量的标准差的标准差和行向量的标准差的标准差为特征的支持向量机2.在实际应用中,大部分空白试卷应用支持向量机1来识别,对个别的位于支持向量机1的分类间隔(margin)内的试卷样本,支持向量机1有可能出现识别错误,在这种情况下,应用支持向量机2作进一步识别.此方法在HSK空白试卷识别中取得了很好的结果.  相似文献   

4.
基于支持向量机的分级调制识别方法   总被引:2,自引:0,他引:2  
目前大部分调制识别方法存在计算量过大和分类器训练困难等问题.针对这一现状,提出了一种基于支持向量机(SVM)的分级调制识别新方法.将接收信号的累积量和瞬时频率统计量作为分类特征参数,并利用支持向量机作为分类器对其进行分级调制分类.该方法相比其他非分级调制识别方法具有较低的计算复杂度和较快的分类器训练速度,并且对于载波频率偏移、相位抖动以及Gauss噪声均具有良好的鲁棒性.计算机仿真表明,针对ASK、FSK、PSK、QAM等11种数字调制信号,当噪声采用Gauss白噪声,并且信噪比≥5 dB时,正确识别率高于95%.  相似文献   

5.
基于支持向量机的缺陷识别方法   总被引:6,自引:0,他引:6  
针对缺陷检测存在的检测手段落后、工序繁琐、准确率低、不易在线实施、受人为因素影响,以及用人工神经网络对小样本事件进行缺陷识别存在的过学习、推广性差等问题,从数据挖掘的角度,提出了直接从形成缺陷的影响因素着手,先消除工艺参数的冗余和噪声,再运用支持向量机分类算法,进行自动缺陷识别的新方法。通过具体的试验表明:该方法具有成本低廉、准确率高、推广性强、容易在线实施等技术优势。  相似文献   

6.
刘强 《太原科技》2007,163(8):90-91
在煤岩识别的研究中采用了基于结构风险最小化的支持向量机,介绍了支持向量机的煤岩界面识别原理,提出一种基于支持向量机的煤岩界面识别方法。  相似文献   

7.
8.
陈兴 《科学技术与工程》2011,11(8):1751-1754
提出一种基于支持向量机的交通标志识别算法。该算法利用交通标志的形状和颜色特征,对在环境中的交通标志图像进行交通标志定位和种类划分,然后利用Hu不变矩对各种类中的交通标志进行特征值提取。最后将特征值输入到支持向量机中,利用支持向量机良好的学习和泛化能力对交通标志进行识别。实验结果表明此方法对交通标志识别准确性很高。  相似文献   

9.
首先利用虹膜处理系统对采集到的虹膜图像预处理,得到条形图像;然后利用主元分析方法(即PCA方法)进行特征提取,以达到降维的目的,得到的一个训练样本对应一个40维的向量;最后利用支持向量机使用序列最小优化算法进行虹膜识别,平均识别率达到了94.3%。结果表明,文中的方法取得了较好的效果,降低了训练时间,提高了训练效率。  相似文献   

10.
基于支持向量机的步态识别新方法   总被引:4,自引:0,他引:4  
为了能更好地提取步态识别参量,克服目前常用步态识别算法的不足,提出了基于频域特征提取与支持向量机(SVM)识别的新方法.首先提取下肢关节点的两维空间运动数据并进行离散傅里叶变换,然后在频域进行窗口滤波,提取中间频段的幅值和相位,以此作为步态特征识别量输入至SVM进行分类识别.使用中国科学院自动化研究所的步态数据库,分别以SVM和人工神经网络(ANN)进行识别,其正确识别率分别为84%-93%和77%-88%,表明本文的新算法具有更好的识别性能.  相似文献   

11.
SVM可在训练样本很少的情况下获得很好的分类推广能力。首先分析了用多类SVM算法对车牌中的字符进行识别时存在不可区分的区域问题和采用模糊SVM算法解决该问题的办法,然后讨论了字符特征的提取方法,并根据我国车牌字符的特点分别设计了汉字、字母、数字、字母/数字4个基于模糊多类SVM的字符分类器。最后在MATLAB环境下,采用径向基核函数对算法进行学习训练。实验测试结果表明,该方法可以很好的提高字符识别的速率和效率。  相似文献   

12.
针对小区停车库管理智能化的需求,设计了一套基于Windows平台的车辆识别和信息管理系统.该系统的硬件可以进行车牌图像采集和存储,软件采用模块化思想设计,可以进行车牌字符分割、车牌字符识别,以及对车辆信息进行数据库管理.系统采用Visual C++与MATLAB混合编程方法进行开发,具有实时性好、界面友好、处理正确率高...  相似文献   

13.
二次定位车牌分割及识别方法   总被引:1,自引:0,他引:1  
智慧城市建设中,需对重点街道和路口采集到的交通视频文件进行智能分析.为此,提出一种二次定位车牌分割、识别方法.首先,利用垂直投影区域特征并结合Hough变换得到车牌的粗略定位分割结果;然后,基于该车牌图像的粗略定位分割结果,采用支持向量机的方法,进行车牌的精细定位分割并对车牌号码进行自动提取、识别.通过对多源车流量视频实验数据中的1680帧车牌图像进行自动车牌提取分析,在5°和10°两个倾斜角度,二次定位车牌识别方法的准确率分别达到96.7%和96.2%,优于相关算法.  相似文献   

14.
以车牌识别技术为核心的高等级公路收费系统   总被引:2,自引:0,他引:2  
以嵌入式车牌识别技术为核心,提出了一个全新的高等级公路收费系统方案,解决了长期困扰高等级公路经营者和管理者不能准确控制收费的问题。  相似文献   

15.
随着自动化和交通工程的发展,汽车牌照识别技术成为一个热点。以识别一张汽车牌照的图片为例,阐明了车牌自动识别的原理,处理过程由预处理、边缘提取、车牌定位、字符分割、字符识别五大模块组成,采用MATLAB编程实现。经过实例证明,所提方法对牌照识别率很高,且识别方式简单易行,可以应用于实际。  相似文献   

16.
一种基于车牌特征信息的车牌识别方法   总被引:18,自引:3,他引:18  
提出一种基于车牌特征信息分析的车牌识别方法,它充分利用车牌定位和字符分割过程中得到的信息对车牌识别过程进行反馈,将二值化、车牌定位和字符分割紧密结合,注重车牌与车辆背景图像分离特征,以连通域分析为字符分割特点,结合局部二值化算法,提高正确率。实际应用结果表明,本方法具有很强的环境适应性和鲁棒性。  相似文献   

17.
一种改进的车牌定位方法在车牌识别系统中的应用   总被引:1,自引:0,他引:1  
车牌识别在智能交通系统中起着重要作用,车牌定位是车牌识别中的关键步骤,目前车牌定位的方法多种多样,各有所长,但是存在着计算量大或定位准确度不高等问题.尝试使用梯度投影与彩色区域分割相结合的方法来实现车牌识别系统中的关键步骤——车牌定位.实验结果表明此方法算法简单、准确率高、实时性好,能够满足实际车辆车牌自动识别系统应用的需要.  相似文献   

18.
一种复杂背景下的多车牌图像分割与识别方法   总被引:10,自引:1,他引:10  
提出一种复杂背景下的多车牌图像分割和知识方法,采用统计和特征匹配相结合的方法去除待识别图像中的背景,提取可能存在车辆的区域;分别对可能的车辆区域进行局部边缘检测,并使用车牌的先验知识确定车牌的位置和单个字符分割,包括车牌倾斜时的字符分割,使用PCA和BP神经网络相结合的方法精确识别车牌,实验结果表明,该方法对复杂背景下多车牌的分割和识别是有效的。  相似文献   

19.
基于线圈与车辆号牌识别技术的治安卡口系统   总被引:5,自引:0,他引:5  
随着我国经济的发展,车辆保有量及交通出行猛增,对违章逃逸、机动车盗抢及以机动车为工具流窜作案的快速侦破查处,成了我国公安交通管理部门的一大难题.全面实行对城市主要出入口、关键道路及交叉口的连续监控,对所有通过该卡口的机动车辆进行拍摄、记录与处理,是解决这一难题打击犯罪行之有效的方法.传统的使用线圈触发和视频抓拍存储的治安卡口无法有效而快速的追查目标车辆,采用线圈与车辆号牌识别技术,建设新型智能治安卡口系统可以做到对车辆号牌的自动抓拍识别、快速处理、报警,可为及时快速侦破这类案件提供强有力的技术手段.  相似文献   

20.
基于图像分割的静止图像车牌识别系统研究   总被引:1,自引:2,他引:1  
介绍一种高识别率的静止图像车牌识别系统的实现方法.并提出一个由图像处理、图像分割、字符识别等组成的静止图像车牌识别系统的工作原理与设计方案.应用MATLAB语言编程实现了该识别系统的仿真,仿真结果表明该方法是行之有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号