首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
随着现代档案管理数据量的不断增长,有效地对档案文本进行聚类划分能够提升档案分类和检索的效率。文中提出2种增量多模态文本数据聚类方法,通过对文本内容进行多视角分析,融合挖掘文本的潜在主题特征,提升文本聚类的准确性。此外,设计文本聚类多模态增量学习模型,提升海量、动态文本划分的效率。在文本数据集上的实验结果表明,文中提出的增量多模态文本聚类方法优于单模态和多模态聚类算法,能够对文本数据进行有效划分。  相似文献   

2.
传统的聚类分析方法一般都没有考虑大容量数据集合的问题,而数据挖掘技术的研究重点之一就是如何从海量数据中高效率地获取知识。结合基于分类方法的K-means中心点算法以及基于层次方法的BIRCH增量算法提出核心树(Core-Tree)的思想来弥补两个算法的缺点,使用中心点的思想来表示BIRCH算法中汇总信息,利用类核心的思想来提高确定中心点的效率。因此,提出一种聚类算法,主要集中在如何提高大型数据集合的聚类效率、如何处理具有各种特征的数据集合。  相似文献   

3.
介绍了3种用于文本聚类的特征选择方法:文档频度、单词权、单词熵.用一个中文文本语料库对这3种特征选择方法进行了比较实验,实验结果表明在文本聚类中单词权的特征选择方法具有最好的选择结果.  相似文献   

4.
基于遗传算法的文本聚类特征选择   总被引:3,自引:0,他引:3  
传统的文本聚类特征选择方法不能发现最优特征集,而遗传算法能获得全局最优解且具有高的寻优效率,因此提出利用遗传算法进行文本聚类的特征选择.把一种特征组合看作一个染色体,对其进行二进制编码,引入文本集密度作为适应度函数进行特征个体适应度的评价.通过选择、交叉和变异的遗传操作,能较为快速地求出最优特征集.对公开的文本分类语料所进行的实验表明,基于遗传算法的特征选择使文本聚类结果的精度较之特征选择前提高了5.9%,而聚类时间减少了15 s.  相似文献   

5.
目的 通过对现有聚类常用算法的研究,给出一种适用于大规模中本数据集聚类的算法DBTC(density-based text clustering)。方法 采用在DBSCAN算法基础上改进提出的DBTC算法,对中本数据集进行聚类。结果 DBTC算法可以发现任意形状的簇,对中本聚类的准确率高达80%以上。结论 经过分析和实验证明DBTC算法比基本的DBSCAN算法更适合于大规模数据集。  相似文献   

6.
在传统层次聚类基础上,提出并实现了一种基于距离的增量式聚类算法,并应用于粮食智能决策支持系统中,算法在保持层次聚类优点的基础上,利用原有的聚类结果提高聚类速度,并可以根据用户需要在聚类精度和聚类速度两方面选取一个适当的平衡点,有效地提高聚类分析的效率。  相似文献   

7.
在数据挖掘领域,聚类是对数据初始的处理。动态系统中,由于经常要增加一些新的数据,如果每次对新增的数据都重新聚类,这样就既浪费时间又浪费资源。首先介绍了聚类的基本概念和聚类的分类,在此基础上提出的一种基于特征向量的聚类算法,它只对新增的数据聚类,这样就会节省大量的资源和时间。通过实验,在动态系统中对新增的数据用该增量聚类算法和重新聚类的算法相比较,最后得出结论,该增量聚类算法是可行的。  相似文献   

8.
文本聚类的关键是对高维的特征集进行降维.本文对常用的一些特征选择、特征抽取等主流特征降维方法进行了介绍,分析了它们各自的特点及其适用范围.  相似文献   

9.
电子政务平台每天都会产生大量短文本数据,挖掘短文本数据对政府掌握民意有十分重要的作用.针对短文本信息量少,单一短文本向量表示模型产生的特征信息丢失问题,提出一种融合权重及主题特征的混合向量表示模型.该模型利用Word2vec和TF-IDF算法挖掘短文本的局部特征,利用BTM主题模型挖掘短文本全局特征,然后将两种特征向量进行连接构成短文本向量.针对短文本数据增量变化特征,通过增加限定阈值改进传统Single-Pass聚类算法,实现短文本的增量聚类.实验结果表明,该模型能够有效的提高短文本聚类效果.  相似文献   

10.
为了加快传统聚类方法的计算速度,提高实际工作的效率,在传统层次聚类算法基础上,探讨了一种基于距离的增量聚类算法,并应用于粮食智能决策支持系统中。算法在保持层次聚类优点的基础上,利用旧的聚类结果提高聚类速度,根据用户需要在聚类精度和聚类速度方面选取一个适当的平衡点,有效地提高了聚类分析的效率。由此得出结论:可以利用旧的历史数据提高分析效率,缩短实际业务中的统计计算时间。  相似文献   

11.
一种增量式文本软聚类算法   总被引:1,自引:0,他引:1  
针对传统文本聚类算法时间复杂度较高,而与距离无关的算法又不适用于动态、变化的文本集等问题,提出了一种基于语义序列的增量式文本软聚类算法.该算法考虑了长文本的多主题特性,并利用语义序列相似关系计算相似语义序列集合的覆盖度,同时将每次选择的具有最小熵重叠值的候选类作为一个结果聚类,这样在整个聚类的过程中大大减小了文本向量空间的维数,缩短了计算时间.由于所提算法的语义序列只与文本自身相关,所以它适用于增量式聚类.实验结果表明,算法的聚类精度高于同条件下的其他聚类算法,尤其适合于长文本集的软聚类.  相似文献   

12.
针对MinMax k-means算法易产生空解、收敛速度慢和计算效率低的问题,提出一种增量式MinMax k-means聚类算法.该算法从给定的初始聚类个数开始,以固定步长递增式产生新的聚类中心,采用基于数据均衡的快速分裂方法产生增量聚类中心,从而避免了传统增量聚类中心选择中遍历数据、k-m eans聚类算法运行次数过...  相似文献   

13.
BBS作为信息交流的重要载体,包含了海量的各方面的信息,如何从中快速的寻找到有用的信息是一个亟待解决的问题.提出一种基于动态文本聚类方法的BBS浏览机制,并给出具体的实现方案,从实验结果可见,分类效率和效果均良好.  相似文献   

14.
增量算法的要求是聚类特征一般是可加的、非迭代的。文中提出了一种基于密度的网格聚类算法GDCLUS,并在此基础上提出了增量式算法IGDCLUS,它可发现任意形状的聚类,具有高效、易实现的特点,适用于数据库周期性地增量环境下的数据批量更新。  相似文献   

15.
针对中文文本聚类受语义、 语法、 语境等因素的影响, 在使用传统向量空间模型向量化表征后, 文本向量之间相互独立, 语义关系被忽略, 影响聚类分析结果的问题, 提出一种基于语义簇的中文文本聚类算法. 该算法根据词共现的原理和语义相关性, 首先使用词频-逆向文档频率(TF-IDF)方法求得特征词权重, 利用特征词的搭配向量构建语义簇; 然后使用特征词及其搭配词的权重, 将特征词向语义簇中心进行空间变换, 求得嵌入语义信息的文档向量; 最后利用文档向量进行K-means聚类分析. 实验结果表明, 该向量化表示方法, 能有效提高文本向量对文本语义的逼近能力, 同时可提高文本聚类结果的准确率和召回率.  相似文献   

16.
针对中文文本聚类受语义、 语法、 语境等因素的影响, 在使用传统向量空间模型向量化表征后, 文本向量之间相互独立, 语义关系被忽略, 影响聚类分析结果的问题, 提出一种基于语义簇的中文文本聚类算法. 该算法根据词共现的原理和语义相关性, 首先使用词频-逆向文档频率(TF-IDF)方法求得特征词权重, 利用特征词的搭配向量构建语义簇; 然后使用特征词及其搭配词的权重, 将特征词向语义簇中心进行空间变换, 求得嵌入语义信息的文档向量; 最后利用文档向量进行K-means聚类分析. 实验结果表明, 该向量化表示方法, 能有效提高文本向量对文本语义的逼近能力, 同时可提高文本聚类结果的准确率和召回率.  相似文献   

17.
聚类分析要求较高聚类质量和快速响应能力,各行业数据仓库中的大量、高维数据对算法的效率提出了更大的挑战.CURE算法能够提供高质量聚类结果但不满足联机聚类要求.结合数据仓库数据不定期批量、增量更新的特点,提出了一种新的增量式CURE聚类算法——InCURE,利用对象的互连性和近似度,保持原算法的动态聚类特性的同时大大缩短聚类时间.5维、20维、50维的大量数据实际测试表明无论低维还是高维数据,InCURE都比CURE具有更高的效率,适合数据仓库环境下的增量式聚类分析.  相似文献   

18.
针对传统的向量空间模型在文本聚类中的局限性,提出了基于潜在语义分析模型的中文文本聚类系统,并引入WinSTAR作为聚类分析工具,用一个中文文本集作为实例进行验证。实验证明,该方法切实有效,可以提高文本聚类的准确度。  相似文献   

19.
基于有序聚类的文本结构分析方法   总被引:1,自引:0,他引:1  
讨论了基于关系图的文本结构分析方法,鉴于文章组织的有序性,运用有序聚类的思想建立数学模型,并利用最优K分法构造自动文本结构分析算法,以划分文章意义段.实验结果表明,该文本结构分析方法是有效的.将该方法运用于自动文摘技术,可使文摘获得更好的可读性和完整性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号