首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用一步低温水溶液法在未制绒的单晶硅材料表面制备ZnO纳米棒阵列陷光结构材料,通过调控生长温度,对纳米棒阵列参数进行调控.利用扫描电子显微镜对不同条件下制备的ZnO纳米棒阵列材料的形貌进行表征,探究生长温度对阵列参数的影响.采用X射线衍射仪、荧光分光光度计、紫外-可见-近红外光谱仪对ZnO纳米棒阵列的晶体结构及光学特性进行分析.结果表明:低温水溶液法制备的ZnO纳米棒阵列结构具有较好的晶体品质、较高的透过率及较好的陷光效果.与2种材料(未制绒的裸硅片、仅有SiNx减反射层的硅片)的表面相比,陷光结构硅的表面反射率有较大幅度的降低.将该陷光结构材料应用于未制绒且镀有SiNx减反射层的单晶硅太阳能电池,与裸硅表面材料的太阳能电池相比,该电池的短路电流密度及转换效率分别提高了30.19%和33.87%.该陷光结构材料具有较好的陷光效果,且易于通过调控生长条件对其陷光效果进行优化.  相似文献   

2.
通过两步法制备了由ZnO纳米棒阵列和Cu2O薄膜组成的异质结。首先利用低温湿化学法在掺氟的SnO2导电玻璃(比较FTO)上生长ZnO纳米棒阵列,然后在ZnO纳米棒阵列上通过水热法继续生长Cu2O薄膜,形成ZnO/Cu2O异质结。通过扫描电子显微镜和X射线衍射仪的表征结果得知,ZnO纳米棒阵列具有很好的c轴取向性,其长度为1μm;而Cu2O薄膜的厚度为1.5μm,其(111)面优先沿ZnO的(002)面外延生长。与ZnO纳米棒阵列相比,ZnO/Cu2O异质结在可见光范围内吸收强度明显增强。在模拟太阳光照射下(AM 1.5,100mW/cm2),由ZnO/Cu2O异质结构成的太阳能电池器件的开路电压为0.36V,短路电流密度为7.8mA/cm2,对应的填充因子为31%,光电转换效率为0.86%。  相似文献   

3.
设计了一种新型的半导体光电化学性能实验,该光电化学系统是由ZnO纳米棒阵列光阳极、Pt对电极、饱和甘汞参比电极以及电解液构成.首先,运用水热法在氟掺杂氧化锡(FTO)导电基体材料上生长结构有序的ZnO纳米棒阵列,然后采用光沉积的方法在ZnO纳米棒表面沉积适量纳米Au颗粒得到Au/ZnO纳米棒阵列.通过扫描电子显微镜分析材料的微观形貌,利用紫外-可见光漫反射吸收光谱、光电化学和电化学阻抗谱等方法测试分析ZnO光电极材料的各项性能.证实了通过在ZnO阵列上负载合适浓度的Au颗粒会显著改善其光电响应,降低其界面电荷转移电阻.该实验不仅能培养本科生严谨的科学研究态度,而且能开发其创新潜能,提高其解决复杂工程问题的能力.  相似文献   

4.
采用电化学沉积方法,选择聚乙二醇(PEG-400)和乙二胺(EDA)为添加剂,直接在ITO导电玻璃上制备了有序阵列的ZnO纳米棒,以及ZnO纳米棒上生长纳米棒微纳分级结构。采用化学浴沉积法均匀沉积Sb2S3纳米粒子,制备了Sb2S3/ZnO纳米棒壳核结构和Sb2S3/ZnO纳米棒上生长纳米棒分级壳核结构。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见吸收光谱(UV-vis)、瞬态光电流等分析手段对其形貌、结构和光电化学性能进行了表征和测试。研究表明,Sb2S3/ZnO纳米棒上生长纳米棒分级壳核结构阵列膜的光电流明显高于Sb2S3/ZnO纳米棒壳核结构阵列。  相似文献   

5.
采用连续离子层吸附法,以ZnO纳米棒阵列为模板,将窄带CdS和更窄带层状MoS_2依次包覆在ZnO纳米棒表面,得到一种ZnO/CdS/MoS_2异质结纳米棒阵列.利用X射线衍射、扫描电子显微镜、高分辨透射电子显微镜和拉曼光谱对产物进行了表征.结果表明,CdS鞘和MoS_2鞘依次均匀地包覆在垂直生长的ZnO纳米棒上,且结合过程中未明显影响内芯ZnO的棒状结构.在异质结结构中,ZnO/CdS界面、CdS/MoS_2界面接触良好且晶格失配率低.此外,一维ZnO纳米棒阵列的存在也抑制了MoS_2在c轴方向上的堆积,使包覆在纳米棒上的MoS_2以少层的形式存在.原位电输运特性表明,与ZnO纳米棒和ZnO/CdS异质结纳米棒相比,ZnO/CdS/MoS_2异质结纳米棒则呈现出了更优的电学特性.  相似文献   

6.
以碳布(CC)为基体、氧化锌纳米棒为模板,2-甲基咪唑为有机配体,采用水热与高温碳化方法,在碳布表面构建氧化锌纳米棒阵列复合材料(ZnO/C);利用电沉积法在ZnO/C复合物表面生长氢氧化镍(Ni(OH)_2)纳米片,获得碳布负载的氧化锌/碳/氢氧化镍(ZnO/C/Ni(OH)_2)核壳结构纳米棒阵列。对获得的复合材料进行形貌和结构表征,并对其电化学性能进行了测试。结果表明:复合物纳米棒阵列均匀生长在碳布表面,纳米棒外层由纳米片状Ni(OH)_2相互交叉堆叠而成;该复合材料作为超级电容器的电极材料时,在1.0 A/g的电流密度下比容量可以达到1 051.9 F/g;当电流密度增大到10 A/g后,比容量仍有644.5 F/g;在5.0 A/g的电流密度下进行5 000次循环充放电后,复合电极的比容量仍保留87.1%,展现出良好的电化学性能。  相似文献   

7.
采用"化学刻蚀法"成功将制得的ZnO纳米棒(ZnO nanorods,ZnO NRs)转换成ZnO纳米管(ZnO nanotubes,ZnO NTs).利用X射线衍射仪(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)、光致发光谱(photoluminescence,PL)等表征手段对样品的结构、形貌和性能进行了测试表征.实验结果表明,制得的ZnO NRs和ZnO NTs均为具有六方纤锌矿结构的纳米材料.PL结果显示,大比表面ZnO NTs的形成有效地抑制了光生载流子的复合,并产生了更多的表面缺陷,这将会对材料的光催化性能产生影响.紫外光下,ZnO NTs对有机染料罗丹明B的光催化降解效率优于ZnO NRs.  相似文献   

8.
通过溶胶-凝胶法制备ZnO薄膜,使其充当控制ZnO纳米线(棒)生长的先驱物种子.再采用溶液生长法制备ZnO纳米棒,运用X射线衍射(XRD)、扫描电子显微镜(SEM)和室温光致发光谱(PL)研究了ZnO样品的结构、形貌和光学性质.结果表明先驱ZnO颗粒薄膜可以控制生长准定向的ZnO纳米棒.样品的PL测试结果表明,溶液法制备的ZnO样品具有微弱的紫外发光峰和宽又强的可见发射波带,可见峰与样品的本征缺陷相关.  相似文献   

9.
通过模仿荷叶表面微观结构和表面化学成分的方法,以玻璃为基底在溶液中生长ZnO纳米棒并经表面低自由能化修饰,从而成功制备了ZnO纳米棒阵列超疏水表面.经接触角测量仪表征,该超疏水表面静态水接触角为156°,扫描电镜分析表明所制备的ZnO纳米棒均具有100 nm左右的直径,这种微纳米的复合结构是赋予材料表面超疏水性能的主要因素.最后采用Cassie模型对该超疏水表面的超疏水性能进行了理论分析.  相似文献   

10.
为获得具有三维高密度热点分布的SERS活性基底材料,提出一种高效构筑具有高密度热点效应基底材料的方法,即以气/液界面法组装制备聚(苯乙烯-co-N-异丙基丙烯酰胺)@聚丙烯酸(PSN@PAA)二维胶体晶体。通过离子溅射法组装纳米Au粒子层得到大面积沉积Au纳米粒子层的胶体晶体Au复合基底材料,再以PSN@PAA/Au复合膜为基底,利用水热法在其表面调控生长ZnO纳米棒结构。进一步在PSN@PAA/Au-ZnO表面组装纳米Au,获得具有三维高密度热点分布的PSN@PAA/Au-ZnO-Au活性基底材料。以罗丹明6G(R6G)分子为探针分子进行SERS性能研究,结果表明:拉曼信号强度随ZnO纳米棒高度的增加而增强。基底对罗丹明6G的检出限为10-10mol/L,主要拉曼峰强度的RSD约为10.23%,该基底具有很好的检测灵敏性和重复性。  相似文献   

11.
采用两步化学溶液法制备了ZnO和Al-ZnO纳米棒,利用扫描电子显微镜(FE-SEM)(JSM-6700F,Japan)和X射线衍射仪(XRD)(Rigaku D/Max 2500PC,Japan)进行表面形貌表征和结构分析.气敏测试结果表明,Al-ZnO纳米棒元件在380℃下对500和2 000×10-6液化石油气(LPG)的灵敏度分别为9.5和21,掺杂Al3+能有效提高ZnO纳米阵列元件对LPG的气敏性能.  相似文献   

12.
以向日葵秸秆为生物模板合成一种新型的分级多孔结构氧化镍掺杂氧化锌纳米复合材料(Bio NiO/ZnO),利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对复合材料的组成和结构进行表征.实验结果表明,合成的Bio NiO/ZnO保存了向日葵秸秆材料的原始分级多孔结构,该结构由大量尺寸和形状一致的六方晶系纤锌矿型结构的氧化镍与立方晶系文石相结构的氧化镍球形颗粒堆积组成.与未掺杂的ZnO材料相比,Bio NiO/ZnO复合材料制作的气敏传感器对甲醛具有增强的气敏性能.在240℃的工作温度下,该气体传感器对10-4的甲醛的响应为42,响应和恢复时间分别为7 s和6 s.检测的下限为1.48×10-4,与复合物的氧空位浓度增加和两相间p-n型异质结的存在有关.  相似文献   

13.
以Zn(NO3)2.6H2O和(NH2)2CO为源物质,通过水热法以及退火工艺,在F:SnO2(FTO)导电玻璃表面制备了ZnO介孔纳米片薄膜.XRD表征结果表明,经由水热法直接生长在导电玻璃表面的薄膜为Zn(CO3)x(OH)y.nH2O,属于底心单斜晶体结构;经过退火以后,Zn(CO3)x(OH)y.nH2O转变成六角纤锌矿结构ZnO.能谱测量结果也佐证了这一点.扫描电子显微镜(SEM)图像表明,退火后得到的ZnO薄膜为垂直于导电玻璃表面的纳米片结构,纳米片表面密布着纳米尺度的孔洞.在FTO导电玻璃表面直接制备的ZnO介孔纳米片结构可望提高染敏电池光伏性能,是一种有潜力的工作电极结构材料.  相似文献   

14.
文章采用一种热蒸发的方法在镀有Zn膜的掺F的SnO2(FTO)导电玻璃上制备出球形花状ZnO微-纳米分级结构,利用SEM、XRD、PL等手段对球形微-纳米结构的形貌、成分和发光性能进行了分析。分析结果表明,球形花状六方纤锌矿ZnO微-纳米分级结构具有表面多孔特征,有利于染料的吸收。球形花状ZnO微-纳米结构存在近带边发射的近紫外发光(402nm)和来自于深能级缺陷的可见发光(460nm和500nm)。将所制备的样品作为光阳极组装成染料敏化太阳能电池(DSSC),该电池的转换效率η=0.67%,比以纳米棒、树枝状纳米结构、纳米梳作为光阳极材料的DSSC的转换效率要高,但是整体转换效率不高,这是由于晶体内部较多缺陷引起的。  相似文献   

15.
利用化学水浴法在预先制备的聚酰亚胺(PI)/ZnO薄膜衬底上生长ZnO纳米棒阵列。通过X线衍射仪(XRD)和扫描电子显微镜(SEM)对ZnO纳米棒阵列进行表征。考察衬底的性质、反应溶液的浓度、反应温度和反应时间对ZnO纳米棒阵列的影响。结果表明:c轴取向生长的ZnO薄膜衬底有助于形成六棱柱形ZnO纳米棒晶体。水溶液环境中生长的ZnO纳米棒晶体长径比受到反应溶液浓度和温度的影响。ZnO生长初期c轴方向生长速度较快,经过一段时间后纳米棒的直径开始增大,并且能和周围的纳米棒晶体融合生长形成更大的纳米棒晶体。  相似文献   

16.
合成了ZnO纳米粒子(ZnO NPs)附着在MoS2纳米花(MoS2 NFs)上的异质结纳米复合材料(MoS2/ZnO NCs),该材料能够对内分泌干扰物(BPA)进行痕量检测.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等测试仪器对该复合材料的结构进行了表征,并且通过有机染料亚甲基蓝...  相似文献   

17.
采用静电纺丝法和水热法制备了ZnO/TiO_2分级纳米结构,利用扫描电子显微镜和X射线衍射仪对材料的表面形貌和晶体结构进行了表征,并研究了ZnO/TiO_2分级纳米结构传感器的气敏特性.结果表明,ZnO/TiO_2分级纳米结构是ZnO纳米锥柱阵列均匀生长在TiO_2纳米纤维的表面,且水热法生长ZnO纳米锥柱阵列的过程未改变TiO_2纳米纤维的晶体结构.与ZnO纳米锥柱和TiO_2纳米纤维气敏元件相比,ZnO/TiO_2分级纳米结构气敏元件具有更高的灵敏度,且对丙酮具有较好的选择性.  相似文献   

18.
一维金属氧化物纳米材料,例如纳米管、纳米棒和纳米线,其独特的几何形貌、新颖的物理化学性质以及在纳米光学和器件的应用而引起了人们广泛的研究兴趣.在此,采用一种简单的水热法制备了直径小(30 nm)和形貌均一的一维ZnO纳米棒,对制备的氧化锌纳米棒的形貌、晶相结构、光学性质和比表面积等性质进行了一系列表征.将ZnO纳米棒用于光催化降解甲醛,当光催化液相降解甲醛时,光催化性能很稳定,降解率达90.9%;气相降解甲醛时,催化剂很稳定,平均转化率有95.6%,平均矿化率达94.5%.说明ZnO纳米棒液相气相降解甲醛显示出很好的光催化活性.  相似文献   

19.
文章采用水热/溶剂热法分别合成一维ZnO纳米线阵列及均匀SnO2纳米颗粒,再通过旋涂法合成了ZnO纳米线/SnO2纳米颗粒核壳复合纳米结构。在染料敏化太阳能电池(DSSCs)中,与单一结构的ZnO纳米阵列或SnO2纳米颗粒光阳极相比,所合成的新型复合纳米结构的光阳极能有效地提高光电性能,短路电流、开路电压及转化效率分别为2.93mA/cm2、0.64V、0.74%。入射光光电转换效率(IPCE)、强度调制光电流谱(IMPS)及强度调制光电压谱(IMVS)的测试结果表明:SnO2纳米颗粒包裹层能增加比表面积,有利于染料的吸附;能有效地抑制ZnO与电解液界面的电子复合,提高了电子寿命。  相似文献   

20.
对化学水浴法制备的六方纤锌矿ZnO纳米棒,分别采用Ag、NiO以及CuO纳米颗粒进行了表面修饰处理,研究了表面修饰对ZnO纳米棒的气敏选择性、敏感性的作用.结果表明,经过表面修饰的ZnO纳米棒的气敏综合性能有了显著的改善,不仅材料的灵敏度得到了明显提高,而且,CuO修饰的ZnO纳米棒对硫化氢气体有很高的选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号