首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
基于0.6μm CMOS工艺,设计了一种轨对轨运算放大器.讨论了该运算放大器的原理、性能及设计方法,并进行了模拟仿真.此运算放大器采用了3.3V单电源供电,其输入共模范围和输出信号摆幅接近于地和电源电压,即所谓输入和输出电压范围轨对轨.其运放的小信号增益为77dB,单位增益带宽为4.32MHz,相位裕度为79度.由于电路简单,工作稳定,输入输出线性动态范围宽,非常适合于SOC芯片内集成.  相似文献   

2.
1.5 V低功耗CMOS恒跨导轨对轨运算放大器   总被引:1,自引:0,他引:1  
运算放大器是模拟集成电路中用途最广、最基本的部件。随着系统功耗及电源电压的降低,传统的运算放大器已经不能满足低压下大共模输入范围及宽输出摆幅的要求。轨对轨运算放大器可以有效解决这一问题,然而传统的轨对轨运算放大器存在跨导不恒定的缺点。本文设计一种1.5V低功耗CMOS恒跨导轨对轨运算放大器,输入级采用最小电流选择电路,不仅实现了跨导的恒定,而且具有跨导不依赖于理想平方律模型、MOS管可以工作于所有区域、移植性好的优点。输出级采用前馈式AB类输出级,不仅能够精确控制输出晶体管电流,而且使输出达到轨对轨全摆幅。所设计的运算放大器采用了改进的级联结构,以减小运算放大器的噪声和失调。基于SMIC0.18μm工艺模型,利用Hspice软件对电路进行仿真,仿真结果表明,当电路驱动2pF的电容负载以及10kΩ的电阻负载时,直流增益达到83.2dB,单位增益带宽为7.76MHz,相位裕度为63°;输入输出均达到轨对轨全摆幅;在整个共模输入变化范围内跨导变化率仅为2.49%;具有较高的共模抑制比和电源抑制比;在1.5V低压下正常工作,静态功耗仅为0.24mW。  相似文献   

3.
为了满足低电压低功耗的应用需求,本文利用MOSFET在亚阈区的超低功耗特性,实现了一种带共模反馈的亚阈运算放大器.该亚阈运算放大器结构简单,采用TSMC 0.18μm工艺实现,且工作于1.2 V电源电压下.通过Synopsys Hspice仿真,结果表明,该电路在输出负载为0.5pF时直流增益为70.97 dB、单位增益带宽6.346 MHz、相位裕度85.76°、正负压摆率分别为3.58V/μs和-3.58 V/μs,功耗仅为4.80μW.  相似文献   

4.
介绍了一种输入轨至轨CMOS运算放大器,该放大器采用了共源共栅结构做增益级,在输入级跨导使用了电流补偿,以使其几乎恒定.在3 V电源电压下的静态功耗只有180μW,带5 p的负载电容时,直流开环增益,单位增益带宽分别达到75 dB,1.5 MHz.  相似文献   

5.
设计了一个基于GSMC 0.13 μm 3.3 V工艺的轨到轨运算放大器,实现了输入与输出摆幅均为轨到轨,开环增益达到了85 dB,相位裕度保持在60°以上.由于采用gm/Id的设计方法,使得设计更加直观,更加贴近电路的实际情况.仿真显示各项指标均已达到.  相似文献   

6.
提出一种含有带隙基准源的低功耗CMOS运算跨导放大器的设计方法,在Candence的schmatic工具下完成了电路的搭建与整理,并分析了其基本结构.在此基础上,运用Hspice仿真工具建立了电路模型,并完成了系统仿真验证.在7.75V电源电压下,基于csmc 0.5μm工艺模型,本设计可驱动75 pF负载,相位裕度为135度,单位增益带宽为1.19 MHz,静态功耗为3.43 mW,实现了低功耗运算跨导放大器的良好性能.  相似文献   

7.
文章分析了传统的轨到轨运算放大器输入级电路,设计了一种低功耗、恒跨导CMOS运算放大器。整个电路基于0.5μm标准N阱CMOS工艺进行设计,采用HSPICE工具仿真,在3 V单电源工作电压情况下,功耗约为0.15 mW,当电路驱动3 pF电容的负载时,电路的直流增益达到78 dB,单位增益带宽达到3 MHz,相位裕度为81°,达到了设计的低功耗、恒跨导的要求。  相似文献   

8.
设计了一种恒跨导恒增益的轨到轨运算放大器.输入级采用一倍电流镜控制的互补差分对结构,实现轨到轨和恒跨导.通过分析运算放大器电压增益随共模电压变化的原因,提出了一种前馈型恒增益控制模块,可以根据共模电压开启或关闭附加电流源,使运算放大器电压增益保持恒定.输出级采用前馈型AB类输出结构,以达到轨到轨输出效果.采用Chartered公司0.35μm工艺进行流片,仿真及测试结果表明:该运算放大器的直流开环增益为125dB,单位增益带宽为8.879MHz,在整个共模范围内电压增益最大变化率为1.69%.  相似文献   

9.
一种新颖的全差分CMOS运算放大器的设计   总被引:1,自引:1,他引:0  
研究了一种全差分高增益、宽带宽CMOS运算跨导放大器 (OTA) .放大器采用三级折叠 级联结构 ,结合附加增益提高电路 ,大幅提高整个电路增益的同时获得较好的频率特性 ,采用 0 .35 μmCMOSN阱工艺设计 .HSPICE模拟结果放大器的带宽为 2 15MHz(相位裕度 6 2 .2°) ,开环增益为 10 3dB ,功耗仅为 2 .0 1mW .  相似文献   

10.
分析并设计了一种高速、高增益、低功耗的两级全差分运算放大器.该运算放大器用于高速高精度模数转换器中.运算放大器第一级采用增益自举cascode结构获得较大的直流增益,采用2个新的全差分运算放大器替代传统的4个单端运算放大器作为增益自举结构.该放大器采用SMIC 0.18μm CMOS工艺设计,电源电压1.8 V,直流增益125 dB,单位增益带宽300 MHz(负载3 pF),功耗6.3 mW,输出摆幅峰峰值达2 V.  相似文献   

11.
基于全差分结构介绍一种高速CMOS运算跨导放大器,该放大器由折叠共源共栅输入级和共源增益输出级构成,输出级采用极点-零点补偿技术以获取更大的带宽和足够的相位裕度。电路可用在10位20 MSps全差分流水线A/D转换器的采样/保持级或级间减法/增益级中。经过优化设计后,该放大器在0.6μmCMOS工艺中带宽为290 MHz,开环增益为85 dB,功耗为16.8 mW,满足高速A/D转换器要求的性能指标。  相似文献   

12.
一种两级CMOS运算放大器电源抑制比提高技术   总被引:1,自引:0,他引:1  
在解释了传统基本两级CMOS运算放大器低电源抑制比(PSRR)原因的基础上,提出了一种简单电路技术来提高传统基本两级CMOS运算放大器中频PSRR.该方法原理是通过改变偏置结构产生一个额外的信号支路在输出端跟随电源增益,这样在输出端可以得到近似为零的电源纹波增益,从而能提高运放的PSRR.采用0.35μm标准CMOS工艺库,在Cadence环境下仿真结果显示,改进的运算放大器的PSRR在中频范围内比传统运算放大器可提高20 dB以上.  相似文献   

13.
刘婷婷  喻明艳 《应用科技》2005,32(12):16-18
提出了一种单电源5V供电的带共模反馈的两级折叠式运算放大器结构.折叠式运算放大器的输入共模反馈结构使输出共模电平维持在2.5 V左右,增益可达到90 dB以上,相位裕度为45°,同时增益带宽为33 MHz.  相似文献   

14.
论述了用于MOSFET-C连续时间滤波器中的CMOS平衡运放的研制,采用了共模负反馈的技术,使得研制出的运放具有极强的对共模信号的抑制能力。该运放亦具有良好的其他特性,它不仅可用于集成连续时间滤波器中,亦可广泛用于A/D、开关电容滤波器的其他通信用集成电路中。  相似文献   

15.
设计了一种具有高增益、大带宽的全差分折叠式共源共栅增益自举运算放大电路,适用于高速高精度流水线模数转换器余量增益电路(MDAC)的应用,增益自举运算放大器的主放大器和子放大器均采用折叠式共源共栅差分结构,并且主放大器采用开关电容共模反馈来稳定输出电压,该放大器工作在5.0V电源电压下,单端负载为2pF,采用华润上华(CSMC)0.5μm 5VCMOS工艺对电路进行仿真测试,结果显示该运放的直流增益可达到126.3dB,单位增益带宽为316MHz。精度为0.01%时的建立时间为4.3ns。  相似文献   

16.
CMOS光接收机限幅放大器电路设计   总被引:1,自引:0,他引:1  
文章利用CMOS工艺,设计一种用于SDH STM-4速率级(622 Mbit/s)光纤用户网的光接收机限幅放大器。此电路通过直接耦合技术来提高增益、降低功耗;通过多级级联来提高增益,并通过采用有源电感负载来增加带宽,稳定电路直流工作点;并采用商用Smart Spice电路仿真软件和CSMC-HJ 0.6μm工艺参数对该电路进行仿真;结果表明,该电路在从4~500 mV,即42 dB的动态输入范围内,50Ω负载上双端输出电压摆幅稳定在680 mV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号