首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
一种改进的朴素贝叶斯分类器在文本分类中的应用研究   总被引:1,自引:0,他引:1  
文本分类是数据挖掘领域中重要的研究分支.通过对自适应遗传算法和朴素贝叶斯分类器的研究,提出一种基于自适应遗传算法的朴素贝叶斯分类算法.将该算法应用于中文文本分类中,可以生成最优贝叶斯分类器及最优属性集合,提高分类精度.  相似文献   

2.
朴素贝叶斯在处理分类问题上简单高效,通常它假设属性间是条件独立的,且各属性变量对类变量的影响程度是相同的,但在实际应用中这些都难以被满足,从而使得其分类性能降低.因此,提出基于属性约简的加权朴素贝叶斯分类算法,该算法首先根据各属性不同取值的分类能力及属性间的对称不确定性大小,去除了无关属性和冗余属性,使得筛选后的属性之间具有较低的关联度和较强的分类能力;然后再结合属性与类变量及属性间的相关性对各属性进行加权;最后对待判样本进行分类.经实验结果表明,该算法有效地提升了朴素贝叶斯的分类性能.  相似文献   

3.
基于属性约简的PLS加权朴素贝叶斯分类   总被引:1,自引:0,他引:1  
朴素贝叶斯算法是一种简单而高效的分类算法,它的属性独立性假设,影响了它的分类性能.针对这种问题,在分析属性相关性的基础上,通过属性约简选择一组近似独立的属性约简子集,提出一种基于属性约简的偏最小二乘回归加权朴素贝叶斯分类算法.对不同的条件属性给予不同的权值,从而在保持简单性的基础上有效地提高了朴素贝叶斯分类算法的分类性能.实验结果表明,该方法可行且有效.  相似文献   

4.
基于相关系数的加权朴素贝叶斯分类算法   总被引:7,自引:0,他引:7  
朴素贝叶斯分类算法的条件独立性假设在很少情况下能够满足,为了克服该问题,提出了一种基于相关系数的加权朴素贝叶斯分类模型.通过计算条件属性和决策属性之间的相关系数,对不同的条件属性赋予不同的权重,从而在保持简单性的基础上有效地提高了朴素贝叶斯算法的分类性能.首先给出了基于相关系数的属性权值求解方法,然后描述了相应的算法,并对算法原理进行了分析与证明.通过在中医小儿肺炎病例数据集和UCI数据集上的仿真实验,验证了该方法的有效性.  相似文献   

5.
朴素贝叶斯算法因其分类精度高、模型简单等优点而被得到普遍应用,但因为它需要具备很强的属性之间的条件独立性假设,使得其在实际分类学习中很难实现.针对这个缺点,提出了一种基于遗传算法的加权朴素贝叶斯分类算法(G_WNB).该算法将遗传算法(GA)与加权朴素贝叶斯分类算法(WNB)相结合,首先使用基于Rough Set的加权朴素贝叶斯分类算法,综合信息论与代数论给出的属性权值求解方法,计算出每个属性的权值,以初始权值作为初始种群,加权朴素贝叶斯的分类正确率为适应度函数,采用遗传算法优选,以使适应度函数最高的权值为数据集的最终权值,最后使用G_WNB进行分类.实验表明,该算法提高了分类准确率,同时提高了朴素贝叶斯分类器的性能.  相似文献   

6.
 空间分类是空间数据挖掘的重要分支,寻找高效的空间分类算法是空间分类研究的重要方向.在空间对象的邻接图及朴素贝叶斯分类法的基础上提出一个新的空间分类算法,该算法对空间对象进行分类时,既考虑了待分类对象的属性对分类的影响,又考虑了其空间邻接对象对它分类的影响.该算法的计算复杂度不高,分类的正确性好.  相似文献   

7.
提出以乳腺癌数据进行挖掘数据的有效分类方法.针对兰州市某医院乳腺癌数据,通过数据挖掘技术中3种不同的特征提取方法,对乳腺癌数据集的属性进行选择,特征选择后减少的属性代替原来较多的属性,再对其用贝叶斯网络、属性选择分类器、J48、逻辑回归模型、One-R 5种方法进行分类.结果表明,得到的子集再经过分类时所花费时间明显减少,利用贝叶斯网络算法进行分类的准确率和各项性能指标高于其他算法,用逻辑回归模型算法进行特征选择后准确率明显提高.  相似文献   

8.
用正态分布密度函数逼近条件概率的方法,构造出一种新的贝叶斯算法,对服从正态分布的实例进行分类.大量算例验证了该算法的分类有效性,它可以应用到求解各种数据挖掘问题.  相似文献   

9.
朴素贝叶斯分类算法是一种简单并且高效的分类算法,但条件独立性假设在现实中很难满足,导致其性能有所下降.为了解决该问题,本文在关联规则和置信度的基础上对该分类算法进行了改进.通过挖掘出来的关联规则和该规则的置信度,对不同的属性赋予不同的权重,同时实现了该分类算法的MapReduce化,从而在保持简单性的基础上有效地提高了朴素贝叶斯分类算法的分类性能.动车组运维实验表明:该算法提高了分类的准确率和效率.  相似文献   

10.
基于条件互信息下聚类的朴素贝叶斯分类算法   总被引:1,自引:0,他引:1  
 采用条件互信息来度量任意2个条件属性之间的关联程度,采用互信息度量各条件属性与类属性间的关联程度,以此作为将各条件属性进行聚类的准则,提出一种新的将条件属性进行聚类的分组技术.同时,结合朴素贝叶斯分类算法,构造了改进的朴素贝叶斯分类模型.通过仿真实验表明该文提出的算法具有较好的分类性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号