首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 31 毫秒
1.
提出了一种新的基于预测控制的转矩优化控制方法,以协调控制紧急制动工况下的四轮轮毂电动汽车复合制动(液压制动和再生制动)系统.其转矩优化控制器可快速地跟踪车辆在不同路面附着条件下的最佳滑移率稳定区域;同时,在控制目标函数中加入能量回收趋势优化项,用于能量回收目标的快速动态调整,通过调节优化目标函数权值的大小,实现制动安全的同时提高车辆的能量回收能力.在Carsim中建立了车辆模型并和Simulink运行环境进行了联合仿真,验证了提出的转矩优化方法的有效性.  相似文献   

2.
为研究汽车防抱死制动系统(ABS)在爆胎工况下的有效性,基于逻辑门限值控制设计了ABS控制系统,结合动力学软件CarSim与Simulink设计控制系统,以轮胎滑移率为控制对象,以纵向制动距离和横向偏移量为衡量标准,对正常驾驶和爆胎工况下的汽车采用不同的制动方式进行仿真研究。结果表明,在汽车正常行驶和爆胎工况下,逻辑门限值ABS控制器都能起到实时的制动效果,但不同的制动策略有着较为明显的差别;爆胎工况下,汽车的纵向制动距离较正常行驶的汽车有所延长,此时前左、右侧控制策略中的四轮独立控制策略的轮胎没有出现抱死现象,制动效果最佳。  相似文献   

3.
采用横摆力矩优化分配方法的车辆稳定性控制系统   总被引:1,自引:0,他引:1  
为提高车辆的操纵稳定性,设计了采用横摆力矩优化分配方法的车辆稳定性控制系统。控制系统的上层采用基于最优理论的横摆力矩控制器,该控制器根据校正横摆力矩来计算目标控制车轮的参考滑移率;下层是PID控制器,它跟踪上层控制器的参考滑移率,对目标车轮施加制动力矩从而使车辆稳定。采用八自由度非线性车辆模型在不同工况下进行仿真,结果表明所设计的控制系统能够有效地改善车辆的操纵稳定性。  相似文献   

4.
为了解决电动汽车在加速和制动过程中容易发生滑移和抖动、不能满足稳定性和舒适性的要求,提出了一种基于主从式非线性模型预测(nonlinear model prediction,NMP)直接转矩控制(direct torque controt,DTC)的电动汽车鲁棒控制策略。采用双电机-单控制器主从式驱动模型,基于模糊逻辑控制器,在线确定权重因子的精确值,生成优化电动汽车驱动决策的最优切换状态,保证电机速度的精确跟踪。结合NMP-DTC电机控制方法,设计了一种模糊逻辑ASR/ABS控制器,以角加速度变化和滑移率变化为输入,以补偿转矩为输出变量,根据道路特性的变化提供补偿转矩,保证电动汽车行驶在最佳滑移率范围内,提高行驶的稳定性。基于MATLAB/Simulink进行变负载转矩电机跟踪和汽车纵向稳定性仿真,与参考速度进行对比分析。结果表明,所提出的主从式NMP-DTC的电动汽车ASR/ABS控制,在变负载下不仅电机跟踪轨迹误差降低,而且可保证在加速和制动过程中车辆的纵向稳定性控制。  相似文献   

5.
针对车轮纵向滑移率直接影响平台的动力性和操纵稳定性的问题,文中首先分析了滑移率控制问题,并在传统分析模型的基础上建立了考虑各车轮转矩耦合作用与车速观测误差的纵向滑移率动力学模型,以此为基础进行了基于不确定性及外部扰动的最优系统设计、控制器求解,利用动力学仿真软件CarSim针对对开路面对所设计的控制器进行了仿真验证.本文所采用的鲁棒H最优控制器可以较好地保证车轮纵向滑移率在不同工况下稳定在0.2左右,基本达到了控制效果.与未施加控制的情况相比,施加控制后车轮的滑移率得到了显著控制,保证了轮速一致,避免了车轮失速;同时车辆的加速度得到提升,动力性增强.   相似文献   

6.
陈贞健 《海峡科学》2004,(1):38-39,41
通过对汽车ABS在各种路面和行驶状态下制动控制过程的分析,表明采用逻辑门限值控制方式,以车轮减速度、加速度及滑移率为控制参数的ABS,具有路面自动选择功能,能依据路面附着系数的变化情况实施不同的控制,提高汽车的制动效能和方向稳定性.  相似文献   

7.
提出了一种无压力闭环的差动制动实现车道偏离辅助的控制方法.根据车辆和驾驶员参考模型确定纠正车道偏离所需的目标横摆角速度.采用滑模算法设计横摆角速度跟踪控制器,确定附加横摆力矩.基于纵向滑移率均衡设计车轮制动压力调节策略,限制车轮最大滑移率,以提高车辆横向稳定性.设计模糊控制器对压力建立过程进行伺服控制.在Carsim/Labview-RT联合仿真平台上对提出的方法进行硬件在环仿真试验,试验结果表明,所提出方法能有效避免车辆偏离车道,鲁棒性强,且车辆横向稳定性好.  相似文献   

8.
针对汽车制动过程中防抱死制动系统(ABS)具有的非线性、时变性和不确定性,设计了以最佳滑移率为目标的滑模变结构控制器,并且采用径向基神经网络(RBF)实时调整滑模变结构控制器参数,以削弱常规滑模变结构控制的抖振现象。利用MATLAB/Simulink仿真平台搭建单轮车辆制动模型,并进行ABS控制策略的仿真实验。仿真结果表明:在指定路面上制动时,基于RBF神经网络的滑模变结构控制策略能够有效削弱常规滑模变结构控制输出的高频抖振,并能使车辆具有良好的制动效果。  相似文献   

9.
为了提高三轴重载汽车的制动安全性能,搭建了制动动力学模型,基于TruckSim建立了三轴重载汽车整车模型.在对Burckhardt"轮胎-路面"模型和以往自寻最优制动理论研究的基础上,设计了应用于整车模型的三轴汽车自寻最优ABS控制器.采用硬件在环实验的方法,在高附路面、低附路面和对开路面3种工况下验证了控制器的可行性,加入传统ABS作为比较.实验结果证明,在3种工况下,自寻最优ABS将车辆控制在不同的滑移率下,低附路面下的制动效果最明显,制动时间减少0.96s,制动距离减少2.77m,横摆角速度峰值减少1°/s,说明自寻最优ABS可以自动搜索车辆当前路面下的最优滑移率,提高了三轴重载汽车的制动性能和制动过程中的稳定性.  相似文献   

10.
附着系数-滑移率曲线的测定   总被引:5,自引:1,他引:4  
汽车防抱死制动系统(ABS)控制需要道路附着系数-滑移率曲线。基于车轮和整车的动力学方程,提出一种针对特定车型的轮胎道路附着系数-滑移率曲线测定方法。  相似文献   

11.
防抱制动系统转鼓试验台架的研制   总被引:5,自引:0,他引:5  
文中设计并研制的防抱制动系统转鼓试验台架可以对车轮转速、车身速度、垂直载荷、制动管路压力、制动器扭矩等参数进行测量 ,并对由此衍生出的车轮角加速度及减速度、滑移率、地面附着系数、地面制动力等参数进行推算 同时设计了单轮防抱死系统 ,在此台架上进行了试验 ,达到了较好的效果  相似文献   

12.
汽车防抱制动系统制动时的车速计算   总被引:16,自引:2,他引:16  
汽车ABS系统中,滑移率是主要控制参数,制动时车速是确定车轮滑移率的基础。通过轮胎制动模型,对于有稳定压力源ABS的系统,在结构和调压方式确定时,能建立制动轮缸的等效压力函数,通过车轮地面制动力和整车动力学方程求解整车的平均减速度和车速。  相似文献   

13.
汽车防抱制动系统自适应模糊控制算法   总被引:2,自引:0,他引:2  
提出了一种基于自适应模糊算法的防抱制动系统控制方式.针对汽车纵向双轮模型,设计了模糊控制器和滑移率校正器.校正器通过车辆的输入输出参数辨识最佳滑移率,并调整系统控制参数,以提高系统的控制性能.仿真实验验证了控制算法的有效性.  相似文献   

14.
为了提升前后独立驱动四驱电动汽车的综合性能,提出了一种集成前后轴转矩分配和驱动防滑功能的协调控制策略(coordinated control strategy, CCS)。分别设计了基于经济性最优的前后轴转矩分配控制器和基于滑模控制理论的驱动防滑控制器。在此基础上,设计了集成两种控制器工作效能的协调控制策略。与已有集成控制策略不同,提出的策略不是将转矩分配与驱动防滑两种控制功能简单组合,而是在综合考虑车辆的安全性、经济性和动力性条件下进行合理且有效的集成。在常规工况下,车辆默认遵循经济性原则,同时控制器实时监测各车轮的滑移率。当路面条件恶化、无法满足经济性行驶时,在保证安全性的前提下,进行适当的转矩补偿,最大限度地利用路面附着条件,尽可能保障车辆的动力性不受影响。在MATLAB/CarSim环境下对提出的协调控制策略进行仿真验证的结果表明,在加速踏板开度分别为10%、30%、50%时,与传统集成控制策略(traditional integrated control strategy, TICS)相比,所提出的CCS使车辆的动力性能分别提升15.3%、35.6%、4.5%。  相似文献   

15.
4WD电动车滑转率识别及防滑控制研究   总被引:1,自引:0,他引:1  
实时地根据路面附着状况选择最优的滑转率控制目标是电动车驱动防滑控制策略的关键。针对双转子电机四轮驱动电动车的特点,本文首先采用自适应Kalman滤波估计车速信息和轮胎驱动力信息并利用该信息实时计算出附着率-滑转率曲线的斜率k,以对路面附着状况进行准确评估。以估计的路面信息和踏板输入信息为模糊控制器输入,利用带速度修正因子的模糊控制方法对驱动电机输出转矩进行控制以提高电动车在各种道路条件下最大地利用附着系数的能力,获得最佳的驱动防滑控制效果。  相似文献   

16.
ABS四轮车辆的Matlab/Simulink建模与仿真   总被引:4,自引:0,他引:4  
建立了一种四轮车辆制动防抱死系统(ABS)的车辆模型、轮胎模型、路面状况模型和轮速传感器模型,嵌入了气压制动系统和ABS控制逻辑模拟;采用Matlab/Simulink模拟了汽车在直线制动,转弯制动和不同附着系数路面制动的运动状态,为ABS产品的开发提供了依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号