首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将单因素试验与材料表征相结合,探究了广玉兰叶粉及其生物炭的吸附性能及吸附机理。分析结果表明:广玉兰叶粉及其生物炭均为多孔结构且含有丰富的表面官能团,平衡吸附容量分别为109.77 mg/g和105.08 mg/g。pH值升高会提升亚甲基蓝去除率,在pH值为11时,广玉兰叶粉及其生物炭对亚甲基蓝去除率分别为92.63%和90.21%。两种材料均符合朗缪尔(Langmuir)等温吸附模型和二级动力学模型,以单层化学吸附为主,且吸附过程是自发吸热反应。  相似文献   

2.
磷是动植物必不可少的营养物质.然而,地表水中过量的磷会导致水生植物和藻类的快速生长.本研究通过氯化镁对玉米芯残渣进行改性,在无氧条件下高温烧制并与碱改性凹凸棒混合,制备了一种碱改性生物炭-凹凸棒土复合物(MgO-CB-AMAP).该碱改性生物炭具有高比表面积,达396.2 m~2/g,明显高于直接煅烧制备的生物碳(132.7 m~2/g).进一步,评价了MgO-CB-AMAP复合物对水中磷的吸附性能.结果表明:当水中磷浓度5 mg/L、玉米芯及凹凸棒的比例为1∶3、用量为2 g/L时,6 h后磷去除率达91%,吸附量为9.7 mg/g,均高于生物炭(3.6 mg/g)和碱改性凹凸棒(6.1 mg/g).最后,对MgO-CB-AMAP在模拟含磷污染水体中磷的吸附过程进行了动力学研究,该吸附过程符合准二级动力学模型.研究结果表明这种碱改性生物炭-凹凸棒土复合物在磷污染控制中有很好的应用前景.  相似文献   

3.
以花生壳为生物质原料,Pb~(2+)为模型污染物,在水和KMnO_4溶液中分别制备出花生壳水热炭(PSC)和锰改性花生壳水热炭(5%PSC,10%PSC和15%PSC),对水热炭的灰分、比表面积和元素组成进行了分析,用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)进行了表征,并通过吸附率-pH曲线比较了锰改性对水热炭吸附性能的影响,研究了吸附热力学和动力学行为.结果表明,KMnO_4改性提高了花生壳水热炭的灰分含量,在水热炭中形成分散性的MnCO_3,使其比表面积、孔体积和孔径减小.锰改性提高了花生壳生物炭的吸附性能,按水热炭对Pb~(2+)的吸附率大小排列顺序为15%PSC10%PSC5%PSCPSC.在25℃及pH5.5条件下,PSC和5%PSC对Pb~(2+)的吸附过程遵循Freundlich吸附等温方程,而10%PSC和15%PSC对Pb~(2+)的吸附过程符合Langmuir等温吸附方程.10%PSC和15%PSC对Pb~(2+)的饱和吸附量分别为56.53,75.47mg/g.Pb~(2+)在锰改性和未改性生物炭上的吸附遵循准二级动力学方程,吸附率由大到小的顺序为15%PSC10%PSC5%PSCPSC.  相似文献   

4.
以小麦秸秆为原料热解制备生物炭,分别用FeSO_4/FeCl_3和FeCl_3对生物炭进行表面改性。表征结果显示,改性生物炭表面存在磁性颗粒和Fe—O基团,负载铁后生物炭的比表面积和总孔体积显著增大。吸附实验结果表明,改性后生物炭吸附Cr(Ⅵ)的吸附性能优于未改性生物炭,且以FeSO_4/FeCl_3改性的生物炭吸附性能更佳,在Cr(Ⅵ)溶液初始pH为2、初始浓度为100 mg·L~(-1)、温度为30℃、振荡速率为150 r·min~(-1)、生物炭投加量为4 g·L~(-1)、吸附时间为48 h的条件下,FeSO_4/FeCl_3改性的生物炭对Cr(Ⅵ)的去除率达93.9%;负载铁生物炭对Cr(Ⅵ)的吸附符合拟二级动力学模型和Langmuir等温吸附模型。  相似文献   

5.
用KMnO4和KOH对椰壳生物炭进行改性,制备成改性椰壳生物炭。采用傅立叶红外光谱对其进行了表征,探究了吸附剂投加量、温度、溶液pH和U(VI)初始质量浓度对U(VI)吸附性能的影响,分析了其吸附铀的机制。结果表明:在T=298 K、c0=10~80 mg/L,pH=5的条件下,改性椰壳生物炭对U(VI)的吸附能力达到4.82 mg/g;改性椰壳生物炭的—OH可与U(VI)发生络合反应;改性椰壳生物炭对U(VI)的吸附符合准二级动力学模型、粒子内扩散模型以及Langmuir等温吸附模型。  相似文献   

6.
铁改性生物炭被认为是一种环境友好型吸附剂,可用于处理多种水体污染,其吸附能力及吸附特性由于不同的制备方法而存在差异.鉴于此,综述了铁改性生物炭常见的制备方法及其对水体污染物(重金属、氮、磷、有机物)的修复应用,并对其主要的吸附机理进行总结.重点阐述了铁改性生物炭的原料选择、物理化学预处理、热解温度以及改性方法等对生物炭性质以及水环境中有机无机污染物吸附效果的影响,以期为铁改性生物炭在水环境修复中的高效应用提供科学依据.最后,对铁改性生物炭未来的研究方向提出了一些建议.  相似文献   

7.
以城市污水处理厂剩余污泥为原料,热解制备生物炭基质,经Fe2+/Fe3+改性加载纳米级铁氧化物颗粒,得到新型磁性生物炭材料(MBC),用于水体中重金属离子吸附.利用VSM,SEM-EDS,XRD,FTIR等综合分析磁性生物炭材料的物理化学特性,结果表明:生物炭基质表面加载磁性γ-Fe2O3颗粒,分布均匀,其饱和磁化强度达13.53Am2/kg.磁性生物炭投加量1.25g/L、吸附时间24h、水体pH为5.0时,Cu2+吸附量为67.68mg/g,较生物炭基质吸附量增加60.08%.磁性生物炭吸附过程符合Langmuir吸附等温线、准二级吸附动力学模型.污泥基磁性生物炭吸附效果显著,兼具便于从水体中分离的优势,可实现“以废治废”的环保目标.  相似文献   

8.
为提高核桃壳基生物炭吸附水溶液中Cu~(2+)的效率,用不同浓度高锰酸钾溶液对高温(600℃)热解制备的核桃壳基生物炭进行改性.通过N_2吸附等温线、SEM-EDX和XPS对改性前后核桃壳基生物炭的结构特征和表面化学特性进行分析,结果表明:改性核桃壳基生物炭表面添加了新的含氧基团,含氧基团主要以Mn—O和Mn—OH的形式与锰基团结合.在温度为25℃、pH为5.3的条件下改性核桃壳基生物炭对Cu~(2+)的最大吸附能力为61.35 mg/g,是未改性核桃壳基生物炭的5.3倍.改性核桃壳基生物炭吸附Cu~(2+)能力的增加主要是因为表面负载了MnO_x和氧基团.  相似文献   

9.
针对作为我国核废料处置库缓冲/回填材料——高庙子(GMZ)膨润土——在长期运营条件下的缓冲性能衰减问题,利用梧桐叶为碳源制备生物炭改性GMZ膨润土,通过微观表征和批次吸附试验,研究了其结构和对Eu(Ⅲ)的吸附性能,进一步探讨了复合材料的作用机理.结果表明,生物炭改性GMZ膨润土中的官能团出现次甲基(—CH),说明有机官能团嫁接成功,层间距进一步增大,蒙脱石表面的细小颗粒在改性后变大.在吸附性能方面,随着固液比和接触时间的增加,吸附率提高;随着pH值、离子强度的增加,吸附率降低;生物炭改性GMZ膨润土对Eu(Ⅲ)的吸附等温线符合Langmuir模型和准二级动力学模型,最大理论吸附量为32.36 mg·g~(-1).  相似文献   

10.
为了提高对废水中Cr (Ⅵ)的去除效率,获得高效且成本低廉的吸附剂,以农业废弃物玉米秸秆为原材料制备生物炭,并采用氯化锌对其进行改性。实验表明,在固液比为2 g/L、pH为2、Cr (Ⅵ)溶液初始质量浓度为100 mg/L、吸附时间为6 h时,最佳改性剂比例条件下改性炭的去除率能够达到99.3%,比未改性的生物炭高73.7%。此外,考察了单一因素改性剂比例、溶液pH、吸附温度、离子强度对吸附效果的影响。同时研究了改性炭对Cr(Ⅵ)的吸附动力学和吸附等温线。结果说明该吸附是自发、熵增的吸热过程且吸附反应符合准二级动力学方程和Langmiur等温模型,最大饱和吸附容量为72.46 mg/g。通过扫描电镜(scanning electron microscopy)、傅里叶红外光谱(Fourier transform infrared spectroscopy)、X射线衍射(X-ray diffraction)等方法对原炭(biochar)和改性生物炭(modified biochar)进行表征,分析表明改性炭微孔结构明显,表面粗糙,吸附位点增加,芳香化程度提高,从而提高了吸附性能,且锌以氢氧化物颗粒形式存在于生物炭表面。  相似文献   

11.
将广玉兰落叶在马弗炉中450℃ 缺氧烧制,得到可以吸附工业废水中亚甲基蓝染料的新型生物炭,并通过一系列单因素实验测试其吸附性能并研究其机理.实验结果表明,当处在pH>9的水环境下该生物炭吸附效果最好.在15 mg/L的染液中,投加0.5 g/L生物炭,反应平衡时染料去除率可以达到97.19%.通过等温吸附模型计算出该生...  相似文献   

12.
以香蕉秸秆生物炭为基底,采用浸渍改性的方法,制备了一种铁锰负载生物炭用以吸附Cd2+。通过响应面法对改性生物炭制备条件进行优化,在最优制备条件下,铁锰改性生物炭对Cd2+的预测吸附量为235.64 mg·g-1,实际吸附量为221.03 mg·g-1,相对偏差为6.2%。SEM-EDS、XRD、FTIR分析结果表明,改性后的生物炭表面成功负载铁锰元素,经分析对Cd2+的吸附机理为离子交换、官能团络合、矿物沉淀和阳离子-π作用。铁锰改性生物炭对Cd2+的吸附符合Langmuir模型和准二级动力学模型,说明吸附过程是单分子层吸附和化学吸附。  相似文献   

13.
以玉米秸秆为原料,利用氧氯化锆浸渍-限氧热解法制备一种新型的载锆生物炭阴离子吸附剂.采用场发射扫描电镜(FE-SEM)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和比表面积测定(BET-N2)等手段,对空白生物炭(BC)及载锆生物炭(Zr-BC)的形貌、组成及结构进行表征.结果表明:热解后的生物炭表面形貌粗糙,均发育有裂纹和蜂窝状大孔结构;与BC相比,Zr-BC比表面积和平均孔径都有降低,且表面元素含C量大幅降低,含O量显著增加,Zr质量分数达到15.7%;Zr-BC表面主要官能团有羟基(-OH)、羧基(-COOH)、锆羟基氧化物等,构成吸附性能的结构基础;当pH值为2时,Zr-BC对磷酸盐吸附效果最显著,符合Freundlich等温吸附线模型.通过多种阴离子混合吸附测试发现,Zr-BC对水中磷酸盐有较高吸附量,且选择性较高.  相似文献   

14.
采用农业废弃物玉米芯作为原材料,通过生物碳化(HTC)的方法在不同温度下制备低成本、高性能吸附剂用生物炭.该生物炭具有介孔结构,表面含有丰富的含氧官能团,如—OH,C==O,C—O等,其种类及密度受水热温度的影响.以亚甲基蓝(MB)作为模型吸附剂,进一步研究了生物炭的吸附性能.吸附动力学研究表明符合拟二级动力学模型吸附行为,且225 ℃水热条件下得到的生物炭具有最大吸附量(41.37 mg/g)和最高吸附速率.等温吸附平衡数据与Langmuir等温模型吻合较好,表明生物炭对MB的吸附是单层吸附;生物炭表面含氧官能团与MB分子相互作用有助于吸附过程.  相似文献   

15.
探索废弃生物质制备磁性生物炭的方法并研究其对亚甲基蓝的吸附性能.以果树残枝为原料,采用水热法制备了一种新型磁性钴镍铁氧体-生物炭复合材料,结合扫描电镜、X-射线衍射、比表面测试、红外光谱分析和磁滞回线等手段对制备的磁性钴镍铁氧体-生物炭和生物炭进行形貌、物相、结构和磁性特性表征分析;对比考察2种材料对亚甲基蓝的吸附行为...  相似文献   

16.
改性生物炭对镉离子吸附性能研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以废弃松木屑为原料采用热分解法制备生物炭,并以氨气、硝酸、硫化钠和溴水4种化学试剂分别对其进行表面改性。采用BET、FTIR和Bohem滴定等技术对改性前后的生物炭进行表征,研究溶液pH值、初始溶液Cd2+浓度、吸附时间等因素对Cd2+吸附特性的影响,并探讨改性生物炭的吸附机理。结果表明,改性生物炭具有较大的比表面积、发达的孔结构和多种表面官能团;在一定范围内,随溶液pH值的增大、Cd2+浓度的升高、吸附时间的延长,改性生物炭对Cd2+的去除率逐渐提高,其中氨气改性生物炭对Cd2+的吸附效果最优,在溶液pH值为6、初始溶液Cd2+浓度为50mg/L、生物炭加入量为2g/L、吸附时间为6h时,氨气改性生物炭对Cd2+的吸附容量可达12.3mg/g;拟二级动力学方程和等温吸附模型均能较好地描述改性生物炭对Cd2+的吸附过程,其中氨气改性生物炭的Langmuir与Freundlich吸附常数最大。  相似文献   

17.
在微波作用下以盐酸萘乙二胺(NETH)、溴代十六烷基吡啶(CPB)和十六烷基三甲基溴化铵(CTMAB)为改性剂,制备了系列有机膨润土.通过X-射线衍射(XRD)、傅里叶红外光谱分析(FTIR)和有机物含量分析对各种膨润土进行表征,同时考察了三种改性土对结晶紫的吸附效果.结果显示,以NETH改性的膨润土吸附效果最好,在pH=6.0的近中性溶液中,0.2g的NETH/Bt在60min内对初始浓度为48.96mg/L的结晶紫吸附率达98.0%,并且其吸附等温线符合Freundlich方程.  相似文献   

18.
以玉米秸秆为生物质材料, 分别在250,350,450 ℃碳化温度下制备3种玉米秸秆生物炭(分别命名为B250,B350,B450), 利用红外光谱和扫描电镜对其结构和表面形貌进行表征, 并通过实验室模拟考察其对氮磷的吸附性能. 结果表明: 随着碳化温度的升高, 玉米秸秆生物炭表面的微孔形变程度加剧, 粗糙程度增大, 芳构程度提高, 稳定性增强; B250玉米秸秆生物炭稳定性相对较弱, 在吸附过程中存在较强的磷释放作用, 对磷呈现显著负吸附; B350和B450对磷的吸附动力学过程均可用Lagergren准二级动力学模型描述; 3种玉米秸秆生物炭对磷的吸附热力学过程均可用Langmuir方程描述, 对磷的饱和吸附量为B450>B350>B250; 玉米秸秆生物炭对氮的吸附动力学过程符合Lagergren准二级动力学模型, 吸附热力学过程符合Langmuir方程, 对氮的吸附速率为B450>B350>B250, 饱和吸附量为B450>B350>B250.  相似文献   

19.
为了探讨生物质种类对制备热解生物炭吸附去除污染物性能的影响,以水曲柳、花生壳及牛粪为生物质原料,在400℃下热解4 h制备生物炭(FM-BC、PS-BC和CM-BC).对生物炭的产率、灰分、元素组成和表面官能团的变化进行了分析.结果表明,牛粪生物炭的产率最高(57.9%)、灰分最高(66.9%),同时碱性基团和酸性基团数量之比最大.用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)及场发射扫描电子显微镜(FESEM)进行了表征,结果表明,除牛粪生物炭外,其他两种生物炭生成了完全无定形的碳;观察生物炭的形貌,都呈现出多孔炭架结构,孔隙结构非常丰富,并且PS-BC的孔道轮廓更清晰完整.以Pb~(2+)为模型污染物,通过序批式吸附实验比较了不同生物炭的吸附性能,研究了其吸附热力学和动力学行为.在25℃及p H=5.5条件下,FM-BC、PS-BC和CM-BC对Pb~(2+)的饱和吸附量分别为11.99、31.9和197.99 mg·g~(-1),吸附能力由大到小的顺序为CMBCPS-BCFM-BC.吸附速率常数分别为0.001 37 g·mg-1·min~(-1),0.000 78 g·mg~(-1)·min~(-1)和0.068 g·mg~(-1)·min~(-1),吸附速率由大到小的顺序为CM-BCFM-BCPS-BC.研究证明,生物质的种类影响着生物炭对Pb~(2+)的吸附性能.  相似文献   

20.
通过小试振荡实验,研究了经573℃热改性的颗粒状石英砂(热改性砂)对水中低浓度磷的吸附效果.对原砂和热改性砂的XRD图谱分析,验证了石英砂的同质异晶转变.研究结果表明,实验时段内热改性砂对水中低浓度磷(1mg/L)的去除率达到99%,磷吸附动力学和等温吸附实验结果可分别由准二级反应动力学模型和Langmuir吸附等温线非线性模拟,相关系数R2均大于0.95.25℃时,热改性砂最大吸附容量(qm)为0.71 mg/g(磷/吸附剂),D-R吸附模型计算的吸附平均自由能E=7.21kJ/mol,物理吸附为优势吸附行为.热改性颗粒状石英砂吸附除磷实现了不引入二次污染的除磷过程,拓宽了颗粒状石英砂在水处理中的应用,为再生水中磷的去除提供了理论支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号