首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了潘勒韦Ⅲ差分方程有限级超越亚纯解的唯一性问题,证明了在一定条件下,如果潘勒韦Ⅲ差分方程的有限级超越亚纯解w和另一个亚纯函数有两个不同的有限分担值并且有完全相同的极点(计重数),那么w≡.  相似文献   

2.
利用李群方法,得到了五阶非线性发展方程的经典李对称、李代数和相似约化.利用幂级数方法得到了该方程的一系列精确幂级数解.最后由相应的李对称得到了该方程的守恒律.  相似文献   

3.
应用经典李群方法得到了扩展Zakharov-Kuznetsov方程的对称和约化方程.通过求解得到的约化方程,结合(G′/G)展开方法、幂级数解法以及Riccati辅助函数法,求出了该方程的一些精确解,包括行波解、有理函数解、幂级数解等.最后,通过对称,进一步求出了该方程的守恒律.  相似文献   

4.
基于李群李对称方法求解一类偏微分方程,得到方程的对称约化和精确解及幂级数解等.  相似文献   

5.
利用李对称分析方法研究了含阻尼项广义Boussinesq方程,并得到了该方程的李代数和优化系统.继而利用得到的优化系统得到了该方程的相似约和精确解.利用幂级数法得到了该方程的幂级数解,最后给出该方程的无穷维守恒律.  相似文献   

6.
利用直接对称的方法研究了正则长波方程,首先求出方程的李点对称及最优系统,其次将正则长波方程约化成常微分方程,进一步结合齐次平衡原理、Riccati方程展开法和幂级数展开法对约化方程求精确解,进而得到该方程的精确解.最后给出正则长波方程的伴随方程和守恒律.  相似文献   

7.
利用经典李群方法,得到(2+1)维Kadomtsov-Petviashvili-Joseph-Egri方程的经典李点对称,并利用对称得到该方程的一些相似约化,通过求解约化方程,得到了该方程的很多精确解,包括双曲函数解,雅可比椭圆函数解,三角函数解,有理函数解,幂级数解等。  相似文献   

8.
运用Painlevé分析与李对称分析得到该时变系数Gardner方程的可积条件及其在不同条件下的对称,并给出对应的动力学向量场,进而分别基于Painlevé分析和对称约化的思想,将时变系数Gardner方程转化为常系数方程,并结合幂级数法求解约化方程的精确解,得到时变系数Gardner方程的若干精确解。  相似文献   

9.
利用待定系数法得到了(3+1)维Zakharov-Kuznetsov-Burgers方程的对称、单参数群和约化方程.结合幂级数展开法和tanh函数展开法以及Riccati辅助函数的应用,我们得到了该方程的一些新精确解,包括行波解、有理函数解、周期解、三角函数解等.最后,基于所求对称和该方程伴随方程的解,得到了方程的守恒律.  相似文献   

10.
利用改进的CK直接方法 ,研究了修正VN方程组,建立了该方程组新、旧解之间的关系,基于此关系推广了方程组的解.同时,得到了该方程组的对称和约化,通过求解约化方程,得到修正的VN方程组许多新的精确解,包括幂级数解、艾米尔函数解、雅克比椭圆函数解等.  相似文献   

11.
利用齐次平衡法获得了一类四阶偏微分方程的B?cklund变换,进而得到方程的几组精确解;然后运用李对称分析方法,获得该方程的向量场,利用相似变换,把难于求解的非线性偏微分方程转化为易于求解的常微分方程,并通过求解所得到的约化方程,结合幂级数展开法,得到原方程的一系列精确解.  相似文献   

12.
本文应用应力和位移可以独立变分的广义变分原理来研究薄板问题,把应力和位移同时展成z的幂级数,得到了一组较为严谨的三阶近似方程。得到的方程在形式上比Reissner方程更为对称,精度比Reissner方程要好些。文中还指出了表面切向载荷对弯曲的影响。  相似文献   

13.
为丰富七阶Kaup-Kupershmidt(KK)方程的解,利用经典李群分析得到了七阶Kaup-Kupershmidt(KK)方程对应的无穷小,进而得到了两种不同形式的约化方程,最后,通过对约化方程进行求解,得到了有理函数解、雅可比椭圆函数解、双曲函数解、三角函数解和幂级数解,同时,给出了幂级数解的收敛性的证明。  相似文献   

14.
研究非线性动力方程的并行求解问题, 利用幂级数展开法对非线性振动系统进行并行分析和运算, 并给出实例.  相似文献   

15.
研究在抑制剂作用下含坏死核的血管化肿瘤生长模型自由边界问题.假设肿瘤是球对称形状,利用幂级数方法证明了在一定条件下模型稳态解的存在唯一性.  相似文献   

16.
主要通过把迭代方程转换成不含迭代的辅助方程,进而为后者构造一致收敛的幂级数解.  相似文献   

17.
研究一类二阶非线性麦克斯韦方程的对称约化以及精确解问题.首先利用李群方法求出该方程的向量场,进而方程的对称也可以得到,并通过求解常微分方程初值问题得到了该方程的对称群.其次,为了研究对称的等价性,利用一维最优化方法得到该方程的最优系统,借助最优系统对方程进行对称约化.为了方便求解约化后的常微分方程,对一些参数做了一定的...  相似文献   

18.
用吴方法计算BBM-Burgers方程的势对称及其不变解   总被引:1,自引:1,他引:1  
用微分形式的吴方法计算了BBM-Burgers方程的古典对称和势对称,并求解了对应的不变解.确定了势对称群,并把它应用于不同对称对应的不变解上得到该方程的一系列精确解.重要的是这些解不能由方程的古典对称得到.求解确定方程组时吴方法起到了关键作用.  相似文献   

19.
应用非线性发展方程的Lax对,研究了方程的非局部对称,给出了非局部对称的一般构造方法.由于非局部对称不能直接用于构造方程的精确解,因此通过引入新变量的方式将非局部对称局部化.最后利用这种方法研究了KdV方程,Boussinesq方程,AKNS系统的非局部对称,并构造了KdV方程的新的精确解.  相似文献   

20.
为了解决分数阶微分方程在多数情况下很难得到其解析解的问题,给出了一种求解时间分数阶Rosenau-Haynam方程近似解析解的方法——残差幂级数法(RPSM)。首先将分数阶Rosenau-Haynam方程用分数阶幂级数展开至n项,然后再将展开后的表达式带入到方程中,利用残差函数的(n-1)α次导数为0即可求得近似解。通过与变分迭代法所得的解作比较,结果表明残差幂级数法所得解析解的误差更小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号