首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对同时具有未知干扰以及输入饱和与死区特性的大气层内拦截弹姿态控制系统,提出了一种基于干扰补偿的自适应动态面控制器设计方法。该方法通过设计改进的非线性干扰观测器(nonlinear disturbance observer, NDO)对未知干扰进行抑制,利用径向基函数(radial basis function,RBF)神经网络逼近输入饱和引起的非线性项,通过设计参数自适应律在线估计未知死区边界。通过构造合适的Lyapunov函数,证明闭环系统状态一致终结有界。仿真结果表明,所提方法鲁棒性良好,在输入非线性和未知干扰作用下,依然能良好地跟踪指令信号。  相似文献   

2.
针对一类单输入单输出的严格反馈时滞系统研究跟踪控制问题。该控制系统包含不确定项、输出约束、未知死区特性和未知时间延迟。首先,设计一个状态观测器来估计无法测量的系统状态;其次,利用径向基函数(radial basis function,RBF)神经网络去逼近未知的系统内部动态;同时,利用障碍李雅普诺夫(Lyapunov)函数确保输出约束及Lyapunov-Krasovskii方法消除时滞项对系统的影响;最后,基于Lyapunov稳定性理论,构造一个鲁棒自适应神经网络输出反馈控制器,并且克服了过参数问题。结果显示,设计的神经网络输出反馈控制器可以保证闭环系统中的所有信号都是半全局最终一致有界的,跟踪误差能收敛到零值小的领域内。文中通过两个例子进一步验证了提出方法的有效性。  相似文献   

3.
A finite-time tracking control scheme is proposed in this paper based on the terminal slid- ing mode principle for motor servo systems with unknown nonlinear dead-zone inputs. By using the differential mean value theorem, the dead-zone is represented as a time-varying system and thus the inverse compensation approach is avoided. Then, an indirect terminal sliding mode control (ITSMC) is developed to guarantee the finite-time convergence of the tracking error and to overcome the singu- larity problem in the traditional terminal sliding mode control. In the proposed controller design, the unknown nonlinearity of the system is approximated by a simple sigmoid neural network, and the ap- proximation error is diminished by employing a robust term. Comparative experiments on a turntable servo system are conducted to show the superior performance of the proposed method.  相似文献   

4.
Gao  Xuehui  Zhao  Wei  Wang  Shubo  Wang  Minlin  Ren  Xuemei 《系统科学与复杂性》2019,32(4):1039-1052
A prescribed performance adaptive control(PPAC) is proposed for Hammerstein system where nonlinearity is described by backlash-like hysteresis. In order to simplify the controller design as well as guarantee the precision of the controlled system, the tracking error is transformed into performance error by two steps. The first step is to transform the tracking error into scalar error,but it magnifies the tracking error decreasing the accuracy of the controlled system. Therefore, a new S(z) is proposed for prescribed performance function(PPF) and the second step is transforming the scalar error into performance error by the proposed PPF, which guarantees the scalar error converges to a prescribed bound to improve the control accuracy. Finally, Lambert W function is introduced for the Lyapunov function candidate to guarantee the closed-loop system bounded and the tracking error converged. Simulations demonstrate the effectiveness of the proposed approaches.  相似文献   

5.
针对受模型不确定和外部干扰影响的并联式运载器上升段姿态控制问题, 提出了一种基于广义超螺旋算法的自适应滑模有限时间控制方法。首先, 将姿态跟踪控制问题转化为跟踪误差系统的镇定问题, 建立了面向控制的模型。其次, 将单输入单输出(single input single output, SISO)固定时间广义超螺旋算法拓展应用到多输入多输出(multiple input multiple output, MIMO)耦合非线性系统上, 基于该算法设计了固定时间状态观测器和自适应滑模有限时间控制器, 利用Lyapunov稳定性理论证明了闭环系统的有限时间稳定特性。最后, 通过与传统比例-微分(proportional and differential, PD)控制器仿真对比, 验证了该方法具有更优的控制精度和鲁棒性。  相似文献   

6.
针对一类输入受限的不确定非线性系统,提出了一种自适应Backstepping变结构控制器设计方法。建立了受未知非线性特征约束的执行器故障模型,可以描述系统存在死区、齿隙、饱和、滞回等输入受限情形以及可能发生的执行器失效、卡死等故障情形。设计径向基函数神经网络补偿未建模动态项,引入一阶低通滤波器避免了Backstepping控制中的计算复杂性问题。自适应近似变结构控制能够有效削弱控制信号抖振。理论分析和仿真实验结果证明,提出的自适应鲁棒控制律能够在输入受限的情况下自适应地调节控制输入,使得闭环系统稳定且满足控制性能要求。  相似文献   

7.
针对存在系统不确定性和外界干扰的接近绕飞阶段跟踪航天器相对目标航天器的姿态与轨道一体化控制任务,设计了一种具有预设性能的鲁棒反演控制器。该控制器能预先设计系统的稳态与暂态性能,保证相对姿轨跟踪误差满足预先设计的性能指标要求;为避免传统反演控制方法中存在的“微分膨胀”问题,引入滑模微分器对虚拟控制量的导数进行估计;同时利用自适应控制技术估计不确定模型参数及包含滑模微分器估计误差和外界干扰的集总干扰上界,并引入鲁棒补偿项处理这些不确定性带来的影响。理论分析证明所设计的控制方法能保证相对姿轨跟踪误差满足预设性能指标要求,仿真结果验证了所设计控制方法的有效性。  相似文献   

8.
针对无人机编队目标跟踪中性能不可控的问题, 提出了一种具有性能预设的分布式多机编队目标跟踪控制方法。首先提出一种基于运动参数组的编队队形描述与目标跟踪方法, 实现了编队的相位预设与队形控制; 其次利用误差变换方法将有性能约束的误差问题转换为无约束误差控制问题, 并给出了一致性预设性能控制律; 然后分别设计了指数型和预设时间型性能函数, 实现了同一控制律下对不同性能的控制, 保证了编队目标跟踪过程中的收敛时间以及瞬态和稳态性能。最后,仿真证实了无人机编队能够在预期设定的性能范围内实现编队队形控制, 并成功跟踪目标。  相似文献   

9.
针对速度不可测和输入受限的四旋翼飞行器轨迹跟踪控制问题,考虑系统存在模型动态不确定和外界干扰未知的情况,提出一种输入受限四旋翼飞行器轨迹跟踪动态面输出反馈控制方法。该方法首先设计非线性扩张状态观测器估计飞行器系统的速度和广义扰动,然后结合反演法和动态面技术设计动态面轨迹跟踪控制律,以降低控制算法的复杂性,同时引入双曲正切函数解决控制输入饱和问题,并构造辅助方程降低饱和效应,最后选取李雅普诺夫函数证明闭环系统所有信号一致最终有界。以大疆M100飞行器为目标进行控制仿真,结果表明,所设计的输出反馈控制器能够有效地处理飞行器系统控制输入受限、速度不可测和未知干扰问题,实现飞行器精确轨迹跟踪控制。  相似文献   

10.
针对考虑攻角约束的高超声速飞行器控制问题,提出一种受限指令滤波器与预设性能方法相结合的反演控制方案.首先,从高超声速飞行器运动模型中划分出高度子系统并基于反演控制方法设计控制器.为了解决攻角约束问题,构造受限指令滤波器对攻角虚拟指令限幅并保证指令的可导性.然后,利用预设性能方法预先设定约束范围,保证攻角跟踪误差始终满足...  相似文献   

11.
未知非线性系统的神经网络跟踪控制与仿真研究   总被引:6,自引:0,他引:6  
应用输入/输出反馈线性化方法和李亚普诺夫方法,研究了一类具有未知非线性函数的非线性动态系统的自适应鲁棒输出跟踪控制问题。首先通过坐标变换和输入变换,将非线性系统变换为部分线性可控系统。接着采用多层前向神经网络来逼近未知非线性函数,网络的权值根据李亚普诺夫原则来在线修正,这样就克服了多神经网络控制系统中存在的稳定性问题。同时,为了减少权值学习时间,应用遗传算法预先离线训练网络权值。最后提出了一个基于神经网络建模的自适应鲁棒控制律,给出了李亚普诺夫意义下的稳定性证明。所提出的控制律可确保相应闭环系统的状态及跟踪误差一致最终有界。所给的Van der pol系统的例子说明了所提控制方案的有效性与鲁棒性。  相似文献   

12.
Jing  Yuanwei  Liu  Yang  Zhou  Shaowei 《系统科学与复杂性》2019,32(3):803-817
This work investigates the finite-time tracking control problem for a class of uncertain strict-feedback nonlinear systems from a new perspective. First, a novel concept called finite-time performance function(FTPF) is defined. Further, a new sufficient condition of finite-time stability is derived and the tracking error can converge to a predefined region within a finite-time interval. The design process of the proposed technique is simpler. Finally, four simulation examples are carried out to illustrate the effectiveness of presented method.  相似文献   

13.
针对存在执行器故障、控制输入饱和与状态约束的无人机(unmanned aerial vehicle, UAV)姿态控制系统,提出一种新的基于反步法的具有有限时间收敛的自适应滑模姿态容错控制方法。首先,为了抑制执行器故障以及外部干扰的影响,采用自适应和干扰观测器技术,实现对干扰的双重抑制。然后,设计动态辅助系统与障碍Lyapunov函数,证明在输入饱和与状态约束的条件下,闭环姿态控制系统可以在有限时间内稳定,且系统中所有信号最终是有界的。最后,对于小型无人系统的姿态跟踪问题进行性能仿真与对比仿真研究。仿真结果表明,所提出的容错控制方法能够保证在执行机构发生故障时控制系统的有效性,并且该方法具有良好的性能。  相似文献   

14.
针对存在执行器故障、控制输入饱和与状态约束的无人机(unmanned aerial vehicle, UAV)姿态控制系统,提出一种新的基于反步法的具有有限时间收敛的自适应滑模姿态容错控制方法。首先,为了抑制执行器故障以及外部干扰的影响,采用自适应和干扰观测器技术,实现对干扰的双重抑制。然后,设计动态辅助系统与障碍Lyapunov函数,证明在输入饱和与状态约束的条件下,闭环姿态控制系统可以在有限时间内稳定,且系统中所有信号最终是有界的。最后,对于小型无人系统的姿态跟踪问题进行性能仿真与对比仿真研究。仿真结果表明,所提出的容错控制方法能够保证在执行机构发生故障时控制系统的有效性,并且该方法具有良好的性能。  相似文献   

15.
针对浮力调节机构约束下无人水下航行器(unmanned underwater vehicle, UUV)的变深控制问题,提出一种基于正交神经网络饱和补偿器的自适应动态面控制方法。首先,建立考虑执行机构动态特性的UUV数学模型。在此基础上,采用反步法和非线性跟踪微分器设计动态面控制器,同时引入线性扩张状态观测器(linear extended state observer, LESO)在线估计浮力变化与模型不确定性引起的干扰,继而在控制器中进行补偿。然后,基于正交神经网络设计饱和补偿器,并证明闭环系统所有误差一致最终有界。仿真结果表明,与现有的动态面控制方法相比,所提方法在浮力调节机构约束下,具有较好的动态性能与稳态精度。  相似文献   

16.
马连伟  谭永红  邹涛 《系统仿真学报》2008,20(20):5635-5637,5641
神经网络应用于非线性建模具有很多优点,但对迟滞这类多值映射非线性无能为力.一个新的基于神经网络的迟滞建模方法--拓展空间法被提出.通过坐标变换建立基本迟滞算子,将基本迟滞算子的输出与迟滞输入同时作为神经网络的输入,使神经网络的输入空间由一维上升为二维,从而使输入与输出之间形成一对一映射关系.最后的实验结果表明,通过拓展空间法神经网络能够对多值映射非线性进行建模.  相似文献   

17.
针对舰载机着舰的纵向非仿射模型,考虑舰尾流扰动的影响,提出基于非仿射模型的预设性能的控制律方法。与传统反演方法通过设置假设条件将舰载机模型转换成仿射形式不同,将舰载机模型转换为更一般的非仿射形式,放宽了假设条件,并在此模型基础上设计控制律方法,使高度、迎角、俯仰角和俯仰角速率等误差满足预先设定的范围。该方法减少了计算量,控制器结构更加简单,同时对舰尾流扰动具有较强的鲁棒性,提高了着舰航迹精度。  相似文献   

18.
针对直升机机动飞行过程中存在的输入饱和问题,提出了一种基于参数依赖Lyapunov的状态反馈控制方法。首先根据直升机非线性模型建立纵向线性变参数(linear parameter varying, LPV)模型,并采用逆仿真数值分析方法对悬停机动科目进行轨迹建模。基于吸引域与不变集理论,利用参数化线性矩阵不等式(parameterized linear matrix inequalities, PLMI),分析闭环系统的稳定条件。利用松弛变量技术将控制器PLMI条件转化为易于求解的线性矩阵不等式(linear matrix inequalities, LMI)条件,求解悬停机动轨迹跟踪控制律。仿真结果表明了所提模型和控制方法的可行性和有效性。  相似文献   

19.
This paper investigates the distributed finite-time consensus tracking problem for higher-order nonlinear multi-agent systems (MASs). The distributed finite-time consensus protocol is based on full order sliding surface and super twisting algorithm. The nominal consensus control for the MASs is designed based on the geometric homogeneous finite time control technique. The chattering is avoided by designing a full order sliding surface. The switching control is constructed by integrating super twisting algorithm, hence a chattering alleviation protocol is obtained to maintain a smooth control input. The finite time convergence analysis for the leader follower network is presented by using strict Lyapunov function. Finally, the numerical simulations validate the proposed homogeneous full-order sliding mode control for higher-order MASs.  相似文献   

20.
针对导弹以固定终端攻击角拦截机动目标的制导问题,提出一种三维自适应有限时间超螺旋滑模制导律.首先,利用相对运动质点模型将三维制导问题转换为二阶视线角系统的控制问题.其次,构造一种多变量非奇异的快速终端滑模面,结合改进型超螺旋算法,设计了有限时间超螺旋滑模制导律.同时,通过参数自适应增益实时在线估计目标机动引起的外部扰动...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号