首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
令G为n个顶点的图,L(G)与Q(G)分别表示图G的拉普拉斯矩阵和无符号拉普拉斯矩阵。多项式π(L(G);x)=per(xI-L(G))(或π(Q(G);x)=per(xI-Q(G)))称为G的拉普拉斯积和多项式(或无符号拉普拉斯积和多项式)。在本文中,证明了两类双圈图是(无符号)拉普拉斯积和多项式确定的。  相似文献   

2.
设G是一个简单图,Q( G)是它的无符号拉普拉斯矩阵。本文讨论了简单图G在添加一条边时其无符号拉普拉斯矩阵Q(G)的谱在两处发生整数变化的条件。  相似文献   

3.
设G=(V,E)是一个具有m条边的n阶简单图,γ(G)是图G的无符号拉普拉斯谱半径。本文利用图的无符号拉普拉斯谱半径讨论了图的Hamilton性,并分别给出了一个图包含Hamilton路以及泛圈图的充分条件。  相似文献   

4.
一个连通图G的距离无符号拉普拉斯谱半径是G的距离无符号拉普拉斯矩阵的谱半径.G的距离无符号拉普拉斯矩阵定义为Q(G)=Tr(G)+D(G),这里Tr(G)是G的顶点传递的对角阵,且D(G)是G的距离矩阵.研究了所有n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极小值,并刻画了一类n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极大值与极小值.  相似文献   

5.
令A(G)表示G的邻接矩阵,Q(G)=D(G)+A(G)是G的无符号拉普拉斯矩阵,Q(G)的最大特征值是G的无符号拉普拉斯谱半径.在这篇文章中,我们分别确定了给定点连通度、给定块数和给定悬挂点数的图类中无符号拉普拉斯谱半径最大的图的结构.  相似文献   

6.
该文研究了图的两种特殊性质,这两种特殊性质均具有稳定性.首先对原图进行了闭包运算并构造了原图的闭包,将原图是否具有某性质转化到了闭包补图中;其次对闭包补图的结构进行了合理的分类讨论;最后找到了在一定条件下当补图的无符号拉普拉斯谱半径不大于2k时,原图的独立数不超过k,或在一定条件下当补图的无符号拉普拉斯谱半径不大于n-2时,原图是哈密尔顿-连通的.  相似文献   

7.
设G是具有n个顶点和m条边的简单无向图,Q(G)是图G的无符号拉普拉斯矩阵.讨论了Q(G)的谱半径和与谱半径对应的特征向量的分量.  相似文献   

8.
利用无符号拉普拉斯谱半径与特征向量之间的关系式,研究有n个顶点、最小度为δ且边连通度k′<δ的这一类图中无符号拉普拉斯谱半径最大的图.假设G0是这一类图中无符号拉普拉斯谱半径最大的图,证明G0?Bkn,′δ,其中Bkn,′δ是从Kδ+1和Kn-δ-1之间加入k′条边获得的.  相似文献   

9.
设图G是一个有n个顶点、m条边的简单图,Q(G)为图G的无符号拉普拉斯矩阵,本文利用图的度序列平方和上界,给出了简单图无符号拉普拉斯谱半径的一个新的上界。  相似文献   

10.
若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离.令TrG(vi)表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵.图G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.该文确定了给定匹配数的n个点的图的距离无符号拉普拉斯谱半径的下界.  相似文献   

11.
利用图的无号Laplacian特征值的内插定理,得到了图和其去悬挂点子图的无号Laplacian谱展的大小关系,结合逐渐删去单圈图的悬挂点的图操作,和计算某些特殊单圈图的无号Laplacian谱展的值,确定了n阶单圈图类中具有最小无号Laplacian谱展的图.  相似文献   

12.
1986年,R. A. Brualdi 和 E. S. Solheid 提出关于给定某类图中谱半径最大的图的问题.近几十年,这个问题吸引了众多图论工作者的兴趣。这篇论文研究了具有 个顶点和 个悬挂点的双圈图中无号拉普拉斯谱半径,同时给出了这类图中无号拉普拉斯谱半径最大的图。  相似文献   

13.
本文利用图及其补图的无符号拉普拉斯距离谱半径分别给出了一个图包含Hamilton路、Hamilton圈以及是Hamilton连通图与泛圈图的充分条件。  相似文献   

14.
设图G为简单图,G的无符号拉普拉斯矩阵Q(G)=D(G)+A(G),其特征多项式记为φ(G,λ)=∑n i=0pi(G)λn-i.给出了双圈图的无符号拉普拉斯特征多项式的常数项pn(G),并证明了pn(G)仅与双圈图的基图有关.  相似文献   

15.
设G=(V,E)是n阶简单连通图,D(G)和A(G)分别表示图的度对角矩阵和邻接矩阵,L(G)=D(G)-A(G)则称为图G的拉普拉斯矩阵。利用图的顶点度和平均二次度结合非负矩阵谱理论给出了图的最大拉普拉斯特征值的新上界,同时给出了达到上界的极图,并且通过举例与已有的上界作了比较,说明在一定程度上优于已有结果。  相似文献   

16.
设G为n阶连通的简单图 ,ρ(G)为图G的邻接谱半径 ,μ(G)表示G的Laplacian谱半径。(d1,d2 ,… ,dn) (其中d1≥d2 ≥…≥dn)为G的顶点度序列 ,令r=max{d(u) +d(v) | (u ,v) ∈E(G) } =d(x) +d(y) ,s=max{d(u) +d(v)| (u ,v) ∈E(G) - (x ,y) }。该文证明了μ(G)上下界的可达性 :μ(G) =μ≤ 2 + ρ(LG) ,等式成立当且仅当G是偶图。μ(G)≤ 2 + (r- 2 ) (s- 2 ) ,成立等式当且仅当G为半正则偶图或P4 。μ(G)≥d1+ 1,成立等式当且仅当d1=n- 1。  相似文献   

17.
设G为n阶简单连通图,V(G)为G的顶点集,E(G)为G的边集,du表示顶点u的度,Tu表示顶点u的2-度,μ(G)表示图G的Laplieian谱半径。该文证明了μ(G)≤man{√du^2 dv^2 Tu Tv|uv∈E(G)}。特别,若G为偶图,则min{√du^2 dv^2 Tu tv}uv∈E(G)≤μ(G)≤min{√du^2 dv^2 Tu tv|uv∈E(G)}。  相似文献   

18.
图G的顶点集V(G)={v1,v2,…,vn},其路矩阵记为P(G)=(pij)n×n,pij表示图中vi,vj之间内部顶点不相交路径的最大数目。定义路拉普拉斯矩阵和路无符号拉普拉斯矩阵并得到了其谱半径和能量的界。  相似文献   

19.
给出一个图G,称矩阵Q=D+A为无符号Laplacian矩阵,其中A表示G的邻接矩阵,D表示G的顶点度的对角矩阵.定义无符号Laplacian能量为矩阵Q的特征值与图的顶点度的算术平均值的差的绝对值之和.研究了循环图的无符号Laplacian能量的上界,得到了几个有意义的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号