首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用静电纺丝法制得聚苯乙烯(PS)/钛酸丁脂(Ti(OC4H9)4)/醋酸锌(Zn(CH3COO)2.H2O)复合纤维,经焙烧后得到均一直径、具有较高比表面积和多孔结构的TiO2/ZnO复合纳米纤维。并对所制得的纳米纤维的分别采用X射线粉末衍射(XRD)、红外光谱(IR)、扫描电镜(SEM)等分析测试手段进行了表征。结果表明:煅烧温度、聚苯乙烯浓度对纤维的直径和形貌有很大影响。  相似文献   

2.
以聚乙烯吡咯烷酮(PVP)和聚甲基丙烯酸甲酯(PMMA)为原料,通过静电纺丝法结合三步热处理工艺成功制备出多孔碳纳米纤维.采用X射线衍射、扫描电镜、透射电镜和比表面分析仪等测试方法系统地分析了PVP/PMMA不同质量比对多孔碳纳米纤维的形貌和电化学性能的影响.实验测试结果表明当PVP与PMMA质量比为3∶2时,得到的多孔碳纳米纤维的比表面积最大,可达到545.4m2·g-1,并且具有最好的电化学性能;在0.1C充放电速率下50次循环之后样品的放电比容量约为220mAh·g-1.所有由PVP/PMMA混合原料制备的多孔碳纳米纤维的比容量均高于由PVP原料制备的碳纳米纤维,并具有较好的循环性能.  相似文献   

3.
静电纺丝技术是近年来兴起的一种简单高效、经济快捷的纳米纤维材料制作技术。近年来,纳米材料在诸多领域都得到了广泛应用,越来越多的人将关注点放在对静电纺丝技术的研究和探索上,并且取得了较为可观的成果。基于此,本文对静电纺丝技术的影响因素及应用研究进行探究,以期为相关学者的研究提供借鉴。  相似文献   

4.
采用高压静电纺丝的方法制备了P(VDF-HFP)(聚偏氟乙烯-六氟丙烯共聚物)/EMIBF4(3-乙基-1-甲基咪唑鎓四氟硼酸盐)离子液体聚合物电解质.通过SEM和TG分别对其结构和热稳定性进行了表征,采用电化学方法考察了聚合物电解质的分解电压和室温离子电导率.结果表明,聚合物电解质的热分解温度超过300 °C,室温离子电导率达8.43 mS·cm-1.  相似文献   

5.
通过静电纺丝和溶剂热的方法合成了一维NiCo_2O_4复合中空纳米纤维,利用扫描电子显微镜,X射线衍射,利用电化学工作站进行析氧,电容性质的分析,对一维NiCo_2O_4复合中空碳纳米纤维的形貌,结构,性质进行了测试与表征.结果显示,合成的一维NiCo_2O_4复合中空纳米碳纤维与使用同样比例溶剂和合成温度的刺球状的NiCo_2O_4颗粒具有更好的析氧性质,循环稳定性和更好的电容性质以及更大的活性表面积.而且经过多次循环之后,一维NiCo_2O_4复合中空纳米碳纤维的电催化活性并没有明显的减弱,说明这种以多孔碳纤维为基底通过水热的方法合成出来的复合材料具有一定的实际应用价值.  相似文献   

6.
商用Pt基氧还原反应催化剂稳定性差和生产成本高等缺点,导致锌-空电池等绿色高效的新型能源发展受到限制。因此,开发高效、廉价、耐用的氧还原电催化剂成为电催化领域的研究热点。利用静电纺丝技术制备了Co负载的碳纤维柔性自支撑膜(Co/CNF),通过扫描电子显微镜、X-射线衍射和N2吸附-脱附等对其形貌和结构进行了表征。在0.1 mol·L-1 KOH电解液中,Co/CNF具有优异氧还原反应活性及稳定性,其起始电位和半波电位分别为0.92和0.84 V,经过10 000次循环性能没有明显衰减。以Co/CNF作为空气正极组装锌-空电池,其开路电压为1.46 V、峰值功率密度为185 mW·cm-2,能够稳定运行近80 h,性能优于商业Pt/C催化剂。  相似文献   

7.
8.
采用静电纺丝和热处理技术成功制备了新型锂离子电池负极材料钛酸铜锂(Li2CuTi3O8)纳米粒子.通过扫描电子显微镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、热分析(TG-DTA)、循环伏安法(CV)、恒流充放电和电化学交流阻抗(EIS)等测试手段对材料的形貌、结构、物相及电化学性能进行了表征和研究.结果表明所制备的Li2CuTi3O8纳米粒子具有良好的立方尖晶石结构,粒度分布均匀,粒径约为100~200nm.充放电测试显示,当电流密度为25mA g-1时,Li2CuTi3O8纳米材料的首次可逆容量为245.3mAh g-1;且该电极在50,100,200,500,1 000mA g-1的电流密度下循环10次后,放电比容量分别为189.2,186.1,176.9,152.2,127.5mAh g-1当电流密度再回到25mA g-1时,比容量仍然可达到228.6mAh g-1,该材料显示出良好的循环稳定性和倍率性能,有望成为锂离子电池新型负极材料.  相似文献   

9.
用液相水解法制备了纳米二氧化钛,并对各种影响因素进行了讨论.制得的二氧化钛粒径为20~30nm.  相似文献   

10.
纳米活性炭纤维在处理大型养猪场废水中具有净化效果好、去除氮磷能力强、工艺设备简单、投资运行费用低、生态效益显著等特点.通过对新材料的应用,利用材料本身的特性形成生物动态平衡,使大型养猪场的废水处理达到更高的标准.结果表明:纳米活性炭纤维可以有效去除大型养猪场废水中的各种污染物.试验开始阶段,各污染物的去除率为:总氮占41.24%~59.68%;CODcr占36.3%~47.7%.生物膜达到稳定时各污染的去除率为:总氮占59.68%~75.42%;CODcr占58.7%~71.65%.同时,整个过程显示,纳米活性炭纤维对污水浊度的去除始终保持很好的效果.  相似文献   

11.
研究利用Raman光谱详细表征了液相法制备的纳米ZnO粉末的晶格振动情况,研究了退火温度等实验制备参数对纳米ZnO的结晶情况的影响.分析表明,退火温度对制备纳米ZnO粉末非常重要,当退火温度为550℃时可以制备高纯度、结晶情况良好的纳米ZnO粉末.  相似文献   

12.
CuO-SnO2纳米粉末的制备   总被引:4,自引:1,他引:3  
用溶胶-凝胶法制备了CuO-SnO2纳米粉末,利用TG-DTA、XRD等对样品进行表征。讨论了热处理温度、掺杂物浓度等对最终产物尺寸的影响。  相似文献   

13.
采用sol-gel法,利用旋转成膜机在石英玻璃上,制成了纳米TiO2掺杂稀土Eu的薄膜(Eu-TiO2).利用扫描电镜观察了Eu-TiO2膜的表面形貌,粒径约40 nm,大小、分布较均匀.并发现膜的表面存在重粒子"涡流"富集现象.提出了制备Eu-TiO2薄膜时需要特别注意的"相溶性"问题.利用UV紫外分光光度计测定了Eu掺杂的TiO2纳米粉的UV漫反射光谱,并与纯TiO2纳米粉进行了对比,实验发现掺杂后可引起吸收带红移20 nm.掺1%Eu后Eu-TiO2凝胶在650 ℃灼烧2 h后,经X射线衍射测定,仍显非晶态,对这一反常现象进行了理论上的初步探讨.  相似文献   

14.
以金属铟为靶材,蓝宝石为衬底,氩和氮的混合气体为溅射气体,衬底温度为100℃,溅射功率为100 W,采用射频磁控溅射技术分别制备了溅射压强为0.8、1.0、1.4 Pa的In N薄膜.利用XRD、SEM分析薄膜样品呈六方纤锌矿结构.使用双光束紫外/可见分光光度计测量薄膜的吸收谱,计算得到在溅射压强为0.8、1.0、1.4 Pa下制得的薄膜样品带隙分别为1.825、1.74、1.82 e V.结果表明溅射压强为1.0 Pa时,带隙值最小,结晶质量最好.  相似文献   

15.
采用分子动力学模拟的方法以及镶嵌原子势能,模拟了液态Cu在两种不同墙(与液体Cu润湿的和非润湿的)限制下的结晶过程,润湿性受限Cu液体的结晶温度比非润湿性受限Cu液体更高.研究了在受限条件下,液体结晶温度随厚度的变化.发现非润湿性下Cu的结晶温度随着厚度降低而迅速升高,而润湿性下结晶温度随着厚度降低缓慢升高.  相似文献   

16.
介绍了液相制备金属纳米材料的方法及金属纳米材料的主要应用进展.  相似文献   

17.
在SBR反应器中安装纳米活性碳纤维处理生活污水,进行正常负荷与有机冲击负荷的对比试验,并对生物相进行追踪观察.结果表明:正常负荷运行时,生物膜上的微生物种类多、活性大;出水COD去除率均在90%以上;NH3—N和TP去除率分别在95%以上和72%~85.5%之间,均能达到城镇污水处理厂污染物排放标准(GB18918-2002)中一级A标准要求.系统抗有机冲击负荷的能力强,在提高进水COD浓度3~4倍的情况下,去除率仍保持在86%以上;有机冲击负荷对脱氮效果影响较小,对总磷的去除率下降幅度较大.  相似文献   

18.
通过研究烧结温度对纳米SnO2传感器灵敏度的影响,并与传统的SnO2传感器进行对比分析,得出最佳的烧结温度是660℃,且纳米SnO2传感器的气敏响应远远好于传统SnO2传感器,适合做高灵敏度的气体传感器.  相似文献   

19.
采用溶胶-凝胶法均匀掺杂和表面包覆工艺制备了Al2O3-Fe2O3复合材料,利用X射线衍射对样品的物相进行了测试分析,研究了制备方法对样品结构的影响.结果表明与均匀掺杂工艺相比,表面包覆工艺进一步降低了材料的相变温度.  相似文献   

20.
本文采用共沉淀法制备纳米Fe_3O_4,将其和混凝剂PAC协同处理工业含油废水。试验结果表明:纳米Fe_3O_4对PAC处理含油废水的效果有着明显的增强作用;当废水温度为35℃,加入PAC为3.0 g/L,纳米Fe_3O_4为2.5 g/L、pH=8.0、反应时间为25 min时,COD_(cr)去除率可达86.25%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号