首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Furukawa H  Singh SK  Mancusso R  Gouaux E 《Nature》2005,438(7065):185-192
Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.  相似文献   

2.
Reversing EphB2 depletion rescues cognitive functions in Alzheimer model   总被引:1,自引:0,他引:1  
Cissé M  Halabisky B  Harris J  Devidze N  Dubal DB  Sun B  Orr A  Lotz G  Kim DH  Hamto P  Ho K  Yu GQ  Mucke L 《Nature》2011,469(7328):47-52
Amyloid-β oligomers may cause cognitive deficits in Alzheimer's disease by impairing neuronal NMDA-type glutamate receptors, whose function is regulated by the receptor tyrosine kinase EphB2. Here we show that amyloid-β oligomers bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. To determine the pathogenic importance of EphB2 depletions in Alzheimer's disease and related models, we used lentiviral constructs to reduce or increase neuronal expression of EphB2 in memory centres of the mouse brain. In nontransgenic mice, knockdown of EphB2 mediated by short hairpin RNA reduced NMDA receptor currents and impaired long-term potentiation in the dentate gyrus, which are important for memory formation. Increasing EphB2 expression in the dentate gyrus of human amyloid precursor protein transgenic mice reversed deficits in NMDA receptor-dependent long-term potentiation and memory impairments. Thus, depletion of EphB2 is critical in amyloid-β-induced neuronal dysfunction. Increasing EphB2 levels or function could be beneficial in Alzheimer's disease.  相似文献   

3.
Genetic enhancement of learning and memory in mice.   总被引:118,自引:0,他引:118  
Hebb's rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.  相似文献   

4.
M J Miserendino  C B Sananes  K R Melia  M Davis 《Nature》1990,345(6277):716-718
Receptors for N-methyl-D-aspartate (NMDA) seem to have a critical role in synaptic plasticity. NMDA antagonists (such as AP5) prevent induction of long-term potentiation, an activity-dependent enhancement of synaptic efficacy mediated by neural mechanisms that might also underlie learning and memory. They also attenuate memory formation in several behavioural tasks; there are few data, however, implicating an NMDA-sensitive measure of conditioning based on local infusion of antagonists into a brain area tightly coupled to the behavioural response used to assess conditioning. We now show that NMDA antagonists infused into the amygdala block the acquisition, but not the expression, of fear conditioning measured with a behavioural assay mediated by a defined neural circuit (fear-potentiation of the acoustic startle reflex). This effect showed anatomical and pharmacological specificity, and was not attributable to reduced salience of the stimuli of light or shock used in training. The data indicate that an NMDA-dependent process in the amygdala subserves associative fear conditioning.  相似文献   

5.
Salter MG  Fern R 《Nature》2005,438(7071):1167-1171
Injury to oligodendrocyte processes, the structures responsible for myelination, is implicated in many forms of brain disorder. Here we show NMDA (N-methyl-D-aspartate) receptor subunit expression on oligodendrocyte processes, and the presence of NMDA receptor subunit messenger RNA in isolated white matter. NR1, NR2A, NR2B, NR2C, NR2D and NR3A subunits showed clustered expression in cell processes, but NR3B was absent. During modelled ischaemia, NMDA receptor activation resulted in rapid Ca2+-dependent detachment and disintegration of oligodendroglial processes in the white matter of mice expressing green fluorescent protein (GFP) specifically in oligodendrocytes (CNP-GFP mice). This effect occurred at mouse ages corresponding to both the initiation and the conclusion of myelination. NR1 subunits were found mainly in oligodendrocyte processes, whereas AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptor subunits were mainly found in the somata. Consistent with this observation, injury to the somata was prevented by blocking AMPA/kainate receptors, and preventing injury to oligodendroglial processes required the blocking of NMDA receptors. The presence of NMDA receptors in oligodendrocyte processes explains why previous studies that have focused on the somata have not detected a role for NMDA receptors in oligodendrocyte injury. These NMDA receptors bestow a high sensitivity to acute injury and represent an important new target for drug development in a variety of brain disorders.  相似文献   

6.
Interaction with the NMDA receptor locks CaMKII in an active conformation.   总被引:29,自引:0,他引:29  
Calcium- and calmodulin-dependent protein kinase II (CaMKII) and glutamate receptors are integrally involved in forms of synaptic plasticity that may underlie learning and memory. In the simplest model for long-term potentiation, CaMKII is activated by Ca2+ influx through NMDA (N-methyl-D-aspartate) receptors and then potentiates synaptic efficacy by inducing synaptic insertion and increased single-channel conductance of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Here we show that regulated CaMKII interaction with two sites on the NMDA receptor subunit NR2B provides a mechanism for the glutamate-induced translocation of the kinase to the synapse in hippocampal neurons. This interaction can lead to additional forms of potentiation by: facilitated CaMKII response to synaptic Ca2+; suppression of inhibitory autophosphorylation of CaMKII; and, most notably, direct generation of sustained Ca2+/calmodulin (CaM)-independent (autonomous) kinase activity by a mechanism that is independent of the phosphorylation state. Furthermore, the interaction leads to trapping of CaM that may reduce down-regulation of NMDA receptor activity. CaMKII-NR2B interaction may be prototypical for direct activation of a kinase by its targeting protein.  相似文献   

7.
Won H  Lee HR  Gee HY  Mah W  Kim JI  Lee J  Ha S  Chung C  Jung ES  Cho YS  Park SG  Lee JS  Lee K  Kim D  Bae YC  Kaang BK  Lee MG  Kim E 《Nature》2012,486(7402):261-265
Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disability. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2(-/-)) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-D-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with D-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2(-/-) mice. Furthermore, treatment of Shank2(-/-) mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2(-/-) mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.  相似文献   

8.
The N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and NR2A-D subunits require dual agonists, glutamate and glycine, for activation. They are also highly permeable to Ca2+, and exhibit voltage-dependent inhibition by Mg2+. Coexpression of NR3A with NR1 and NR2 subunits modulates NMDAR activity. Here we report the cloning and characterization of the final member of the NMDAR family, NR3B, which shares high sequence homology with NR3A. From in situ and immunocytochemical analyses, NR3B is expressed predominantly in motor neurons, whereas NR3A is more widely distributed. Remarkably, when co-expressed in Xenopus oocytes, NR3A or NR3B co-assembles with NR1 to form excitatory glycine receptors that are unaffected by glutamate or NMDA, and inhibited by D-serine, a co-activator of conventional NMDARs. Moreover, NR1/NR3A or -3B receptors form relatively Ca2+-impermeable cation channels that are resistant to Mg2+, MK-801, memantine and competitive antagonists. In cerebrocortical neurons containing NR3 family members, glycine triggers a burst of firing, and membrane patches manifest glycine-responsive single channels that are suppressible by D-serine. By itself, glycine is normally thought of as an inhibitory neurotransmitter. In contrast, these NR1/NR3A or -3B 'NMDARs' constitute a type of excitatory glycine receptor.  相似文献   

9.
L T Thompson  J R Moskal  J F Disterhoft 《Nature》1992,359(6396):638-641
Persistent neuronal plasticity, including that observed at some hippocampal synapses, requires N-methyl-D-aspartate (NMDA)-mediated transmission. NMDA receptor activation may be necessary for hippocampus-dependent learning as antagonists block acquisition in many such tasks. The behavioural effects of NMDA agonists are less well defined. We have shown that a monoclonal antibody (B6B21) displaced [3H]-glycine that was bound specifically to the NMDA receptor, and enhanced the opening of its integral cation channel in a glycine-like fashion, effects that were competitively antagonized by 7-chlorokynurenic acid. B6B21 also enhanced long-term potentiation in hippocampal slices. We report here that intraventricular infusions of B6B21 significantly enhances acquisition rates in hippocampus-dependent trace eye blink conditioning in rabbits, halving the number of trials required to reach a criterion of 80% conditioned responses. Peripheral injections of D-cycloserine, a partial agonist of the glycine site on the NMDA receptor which crosses the blood-brain barrier, also doubles rabbits' learning rates. Pseudoconditioning control experiments indicated a lack of nonspecific behavioural sensitization effects. Our data suggest that enhanced activation of the glycine coagonist site on the NMDA receptor/channel complex facilitates one form of associative learning and may be used in other learning tasks.  相似文献   

10.
Tye KM  Stuber GD  de Ridder B  Bonci A  Janak PH 《Nature》2008,453(7199):1253-1257
What neural changes underlie individual differences in goal-directed learning? The lateral amygdala (LA) is important for assigning emotional and motivational significance to discrete environmental cues, including those that signal rewarding events. Recognizing that a cue predicts a reward enhances an animal's ability to acquire that reward; however, the cellular and synaptic mechanisms that underlie cue-reward learning are unclear. Here we show that marked changes in both cue-induced neuronal firing and input-specific synaptic strength occur with the successful acquisition of a cue-reward association within a single training session. We performed both in vivo and ex vivo electrophysiological recordings in the LA of rats trained to self-administer sucrose. We observed that reward-learning success increased in proportion to the number of amygdala neurons that responded phasically to a reward-predictive cue. Furthermore, cue-reward learning induced an AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid)-receptor-mediated increase in the strength of thalamic, but not cortical, synapses in the LA that was apparent immediately after the first training session. The level of learning attained by individual subjects was highly correlated with the degree of synaptic strength enhancement. Importantly, intra-LA NMDA (N-methyl-d-aspartate)-receptor blockade impaired reward-learning performance and attenuated the associated increase in synaptic strength. These findings provide evidence of a connection between LA synaptic plasticity and cue-reward learning, potentially representing a key mechanism underlying goal-directed behaviour.  相似文献   

11.
I Mody  U Heinemann 《Nature》1987,326(6114):701-704
In the mammalian central nervous system, receptors for the excitatory amino-acid neurotransmitters are divided into three subtypes depending on their sensitivity to three specific agonists: kainate, quisqualate and N-methyl-D-aspartate (NMDA). The ionophores operated by NMDA are gated by Mg2+ in a voltage-dependent manner and allow passage of several cations, including Ca2+ which may be important in plastic alterations of neuronal excitability. Indeed, specific antagonists of NMDA receptors effectively block spatial learning, long-term potentiation and some animal models of chronic epilepsy. Despite their abundance on central neurons, NMDA receptors, with a few noteworthy exceptions, do not generally seem to be involved in low-frequency synaptic transmission. Here we report for the first time that NMDA receptors of the dentate gyrus, where they do not normally contribute to the generation of synaptic potentials, become actively involved in synaptic transmission following long-lasting neuronal changes induced by daily electrical stimulation (kindling) of the amygdala or hippocampal commissures. In contrast to controls, the excitatory postsynaptic potentials (e.p.s.ps) of granule cells in hippocampal slices obtained from kindled animals displayed characteristics typical of an NMDA-receptor-mediated component. The involvement of NMDA receptors in synaptic transmission may underlie the long-lasting changes in neuronal function induced by kindling.  相似文献   

12.
采用荧光实时定量PCR的方法在48个非小细胞肺癌组织以及配对的正常肺组织中检测Eph/ephrin 基因的mRNA水平.发现肺癌组织中EphB4, EphB3 和 ephrin-A5的表达水平与配对的正常肺组织相比分别上调了60%,81%和65%,并具有显著的统计学差异. 而且,统计学分析发现ephrin-A5的表达水平与肿瘤分型、转移、性别、吸烟以及诊断年龄等临床病理学参数之间存在显著的相关性.此外,EphA2的表达水平与肿瘤大小、家族遗传史以及诊断年龄之间也存在显著的相关性.总之,这些结果提示EphB4, EphA2, EphB3 和ephrin-A5 在肺癌的发生和发展过程中可能以一种单独或者协同的形式发挥作用.这些蛋白有可能成为研究和诊断肺癌的重要靶向基因.  相似文献   

13.
采用荧光实时定量PCR的方法在48个非小细胞肺癌组织以及配对的正常肺组织中检测Eph/ephrin 基因的mRNA水平.发现肺癌组织中EphB4, EphB3 和 ephrin-A5的表达水平与配对的正常肺组织相比分别上调了60%,81%和65%,并具有显著的统计学差异. 而且,统计学分析发现ephrin-A5的表达水平与肿瘤分型、转移、性别、吸烟以及诊断年龄等临床病理学参数之间存在显著的相关性.此外,EphA2的表达水平与肿瘤大小、家族遗传史以及诊断年龄之间也存在显著的相关性.总之,这些结果提示EphB4, EphA2, EphB3 和ephrin-A5 在肺癌的发生和发展过程中可能以一种单独或者协同的形式发挥作用.这些蛋白有可能成为研究和诊断肺癌的重要靶向基因.  相似文献   

14.
15.
将2~3月龄实验小鼠分为前脑NR2B过表达的转基因雌性和雄性小鼠以及同窝野生对照雌性和雄性小鼠,进行社会互动能力测试,包括新环境中的社会互动能力测试、社会交往能力和社会新奇偏好测试.结果显示,前脑NR2B表达量的提高,对NR2B转基因小鼠在新环境中的社会互动能力和社会新奇偏好无影响.但是却使得雌性NR2B转基因小鼠的社会交往能力提高,但是对雄性NR2B转基因小鼠却无明显影响.这表明,NR2B在前脑过量表达会提高雌性小鼠的社会交往能力,但对于雄性小鼠社会行为没有明显影响.  相似文献   

16.
Central nervous system myelin is a specialized structure produced by oligodendrocytes that ensheaths axons, allowing rapid and efficient saltatory conduction of action potentials. Many disorders promote damage to and eventual loss of the myelin sheath, which often results in significant neurological morbidity. However, little is known about the fundamental mechanisms that initiate myelin damage, with the assumption being that its fate follows that of the parent oligodendrocyte. Here we show that NMDA (N-methyl-d-aspartate) glutamate receptors mediate Ca2+ accumulation in central myelin in response to chemical ischaemia in vitro. Using two-photon microscopy, we imaged fluorescence of the Ca2+ indicator X-rhod-1 loaded into oligodendrocytes and the cytoplasmic compartment of the myelin sheath in adult rat optic nerves. The AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptor antagonist NBQX completely blocked the ischaemic Ca2+ increase in oligodendroglial cell bodies, but only modestly reduced the Ca2+ increase in myelin. In contrast, the Ca2+ increase in myelin was abolished by broad-spectrum NMDA receptor antagonists (MK-801, 7-chlorokynurenic acid, d-AP5), but not by more selective blockers of NR2A and NR2B subunit-containing receptors (NVP-AAM077 and ifenprodil). In vitro ischaemia causes ultrastructural damage to both axon cylinders and myelin. NMDA receptor antagonism greatly reduced the damage to myelin. NR1, NR2 and NR3 subunits were detected in myelin by immunohistochemistry and immunoprecipitation, indicating that all necessary subunits are present for the formation of functional NMDA receptors. Our data show that the mature myelin sheath can respond independently to injurious stimuli. Given that axons are known to release glutamate, our finding that the Ca2+ increase was mediated in large part by activation of myelinic NMDA receptors suggests a new mechanism of axo-myelinic signalling. Such a mechanism may represent a potentially important therapeutic target in disorders in which demyelination is a prominent feature, such as multiple sclerosis, neurotrauma, infections (for example, HIV encephalomyelopathy) and aspects of ischaemic brain injury.  相似文献   

17.
Káradóttir R  Cavelier P  Bergersen LH  Attwell D 《Nature》2005,438(7071):1162-1166
Glutamate-mediated damage to oligodendrocytes contributes to mental or physical impairment in periventricular leukomalacia (pre- or perinatal white matter injury leading to cerebral palsy), spinal cord injury, multiple sclerosis and stroke. Unlike neurons, white matter oligodendrocytes reportedly lack NMDA (N-methyl-d-aspartate) receptors. It is believed that glutamate damages oligodendrocytes, especially their precursor cells, by acting on calcium-permeable AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptors alone or by reversing cystine-glutamate exchange and depriving cells of antioxidant protection. Here we show that precursor, immature and mature oligodendrocytes in the white matter of the cerebellum and corpus callosum exhibit NMDA-evoked currents, mediated by receptors that are blocked only weakly by Mg2+ and that may contain NR1, NR2C and NR3 NMDA receptor subunits. NMDA receptors are present in the myelinating processes of oligodendrocytes, where the small intracellular space could lead to a large rise in intracellular ion concentration in response to NMDA receptor activation. Simulating ischaemia led to development of an inward current in oligodendrocytes, which was partly mediated by NMDA receptors. These results point to NMDA receptors of unusual subunit composition as a potential therapeutic target for preventing white matter damage in a variety of diseases.  相似文献   

18.
The central amygdala (CEA), a nucleus predominantly composed of GABAergic inhibitory neurons, is essential for fear conditioning. How the acquisition and expression of conditioned fear are encoded within CEA inhibitory circuits is not understood. Using in vivo electrophysiological, optogenetic and pharmacological approaches in mice, we show that neuronal activity in the lateral subdivision of the central amygdala (CEl) is required for fear acquisition, whereas conditioned fear responses are driven by output neurons in the medial subdivision (CEm). Functional circuit analysis revealed that inhibitory CEA microcircuits are highly organized and that cell-type-specific plasticity of phasic and tonic activity in the CEl to CEm pathway may gate fear expression and regulate fear generalization. Our results define the functional architecture of CEA microcircuits and their role in the acquisition and regulation of conditioned fear behaviour.  相似文献   

19.
用前脑特异性NR1基因敲除小鼠,采用离体脑片场电位技术,研究了NR1亚基在前额叶脑区突触可塑性中的作用.刺激强度—反应(input-output curve)和双脉冲抑制反应(paired pulse depression, PPD)的结果表明,与同窝对照组小鼠相比,NR1基因敲除小鼠前额叶脑区的基本突触传递无明显变化.采用高频刺激(100 Hz, 1 000 ms ×2, 间隔30 s)在小鼠的前额叶脑区诱导长时程增强(long-term potentiation, LTP),与对照组小鼠相比,NR1基因敲除小鼠前额叶脑区的LTP明显受损.以上数据提示,NR1亚基在前额叶脑区LTP的诱导中起着重要的作用.  相似文献   

20.
Humeau Y  Shaban H  Bissière S  Lüthi A 《Nature》2003,426(6968):841-845
The induction of associative synaptic plasticity in the mammalian central nervous system classically depends on coincident presynaptic and postsynaptic activity. According to this principle, associative homosynaptic long-term potentiation (LTP) of excitatory synaptic transmission can be induced only if synaptic release occurs during postsynaptic depolarization. In contrast, heterosynaptic plasticity in mammals is considered to rely on activity-independent, non-associative processes. Here we describe a novel mechanism underlying the induction of associative LTP in the lateral amygdala (LA). Simultaneous activation of converging cortical and thalamic afferents specifically induced associative, N-methyl-D-aspartate (NMDA)-receptor-dependent LTP at cortical, but not at thalamic, inputs. Surprisingly, the induction of associative LTP at cortical inputs was completely independent of postsynaptic activity, including depolarization, postsynaptic NMDA receptor activation or an increase in postsynaptic Ca2+ concentration, and did not require network activity. LTP expression was mediated by a persistent increase in the presynaptic probability of release at cortical afferents. Our study shows the presynaptic induction and expression of heterosynaptic and associative synaptic plasticity on simultaneous activity of converging afferents. Our data indicate that input specificity of associative LTP can be determined exclusively by presynaptic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号