共查询到18条相似文献,搜索用时 62 毫秒
1.
基于三维弹性理论和压电理论 ,研究了功能梯度压电板条中的电渗透型运动裂纹问题 .利用Fourier积分变换方法 ,将混合边值问题化为对偶积分方程 ,并进一步归结为易于数值求解的第二类Fredholm积分方程 .通过渐近分析 ,获得裂纹尖端应力、应变、电位移和电场的解析解 ,给出裂纹尖端场各个变量的角分布函数 ,并求得裂纹尖端场的强度因子 .结果表明 ,对于电渗透型裂纹 ,功能梯度压电板条中运动裂纹尖端附近的各个场变量都具有 - 1/ 2阶的奇异性 ,而且与固定于裂纹尖端的运动坐标有关 ;当裂纹运动速度增大时 ,裂纹扩展的方向会偏离裂纹面 . 相似文献
2.
研究弹性半平面上的裂纹问题,得到一个适宜于求解各向同性半平面断裂力学问题的新边界积分方程,在裂纹面上以位错密度为未知量,以此求解应力强度因子.新的边界积分方程只具有1/r的奇异性,且适用于求解半平面上任意形状的裂纹问题. 相似文献
3.
对机电组合冲击荷载下狭长压电板双共线反平面裂纹的动态响应问题进行了分析.采用积分变换方法将一个电弹性混合边值问题化为奇异积分方程组,进一步利用Gauss-Chebyshev求积公式将其化为一组代数方程,求解这些代数方程并完成拉普拉斯逆变换,获得了裂纹顶端动应力和动电位移强度因子.结合压电陶瓷材料BaTiO,对动应力强度因子进行了数值计算.结果表明:无量纲动应力强度因子随时间T由零迅速增大,很快达到一个峰值,然后缓慢衰减;当T较大时,在其对应的静态值附近作微小振荡.裂纹两端动应力强度因子的峰值随比值b/h增大而增大,且稍右移.本文方法较常用的Fredholm积分方程方法,推导简便、易于数值计算. 相似文献
4.
韩建平 《兰州大学学报(自然科学版)》1993,29(4):63-68
本文推导了任意形状边界有限域上裂纹与夹杂问题的积分方程,求得了以裂纹面上位错密度函数和夹杂上剪应力差表示的弹性力学基本解。给出了裂纹和夹杂尖端附近的应力强度因子表达式。 相似文献
5.
研究了无限长压电材料条中共线并与材料界面平行的双裂纹受反平面剪切冲击作用的问题.假设裂纹面上的边界条件为电渗透型的,采用积分变换和对偶积分方程方法,获得了裂纹尖端应力场.数值结果显示应力强度因子与裂纹的几何尺寸、压电材料长条宽度及材料性质有关. 相似文献
6.
反平面裂纹问题的边界元解法 总被引:1,自引:0,他引:1
在传统边界积分公式的基础上运用分步积分等技巧,得到一个适用于求解反平面裂纹问题的新的边界积分方程,积分核只具有1/r阶的奇异性,在裂纹面上以位错密度为未知量,应力强度因子可由裂纹面上的位错密度求出,新的边界积分方程适用于任意形状的裂纹问题,两个数值算例证明了本文边界元法的正确性。 相似文献
7.
利用奇异积分方程方法研究了一个含裂纹的功能梯度压电压磁条与半无限大功能梯度压电压磁材料粘结在非渗透边界条件下的Ⅲ型裂纹问题.首先通过积分变换得到问题的形式解,然后利用边界条件通过积分变换与留数定理得到了一组奇异积分方程,最后用Gauss-Chebyshev方法进行数值求解,讨论了材料参数、材料非均匀参数以及裂纹几何形状等对裂纹尖端应力强度因子的影响.结果表明,压电压磁复合材料中反平面问题的应力奇异形式与一般弹性材料中反平面问题的应力奇异形式相同,但材料梯度参数对功能梯度压电压磁复合材料中的应力强度因子和电位移强度因子有很大影响. 相似文献
8.
9.
利用复变函数和奇异积分方程方法,求解板条内的分叉裂纹问题。首先给出了反平面弹性情况下,边界(即板条下边界)自由的半平面内单分叉裂纹问题的复势函数。通过用一个长的二分叉裂纹来代替板条上边界,以满足板条的上边界自由,将问题转化为半平面内的多分叉裂纹来处理。根据边界条件建立了以集中位错强度和分布位错密度为未知函数的Cauchy型奇异积分方程,然后,利用半开型积分法则求解该奇异积分方程,得到了各分支尖端的应力强度因子。最后,给出数值算例。 相似文献
10.
研究功能梯度压电带的反平面动态裂纹问题.假设功能梯度压电材料的材料性质沿其厚度方向按指数函数变化,考虑在非渗透型边界条件下,运用Laplace和Fourier变换,将混合边值问题转化为Laplace变换频域里的奇异积分方程,然后利用Laplace逆变换的数值方法求出动态应力强度因子和电位移强度因子.讨论载荷耦合参数、材料分布形式和裂纹位置等因素对断裂行为的影响.数值计算结果对压电材料的设计及应用有参考价值. 相似文献
11.
研究了含界面中心裂纹的不同压电材料在反平面剪切栽荷和平面内电场作用下的反平面问题.得到了用级数表示的满足控制拉普拉斯方程和可导通边界条件的基本解及应力强度因子.最后用边界配置法求解了应力强度因子与截面几何尺寸之间的关系.结果表明,边界配置法计算简便,具有广泛的应用性. 相似文献
12.
讨论了粘接均匀弹性材料的功能梯度压电带中单裂纹对SH射问题,假定裂纹面上的边界条件是电渗透性的,通过Fourier积分变换化为对偶积分方程,利用Copson方法将对偶积分方程转化为第二类Fredholm积分方程解,得到了裂纹尖端的应力强度因子和电位移强度因子,最后讨论了材料梯度参数,波数因素对标准动应力强度因子的影响 相似文献
13.
运用压电材料的广义变分原理推导出了压电材料平面应变问题的有限元列式,并且采用J积分法计算了压电材料平面应变断裂问题的能量释放率G.然后,用Sosa的平面问题裂端渐近解作为辅助场,用有限元数值解作为真实场,由推广的交互M积分法求得了应力强度因子KⅠ、KⅡ及电位移强度因子KⅣ.算例表明,计算结果与理论解符合得很好 相似文献
14.
马旭 《苏州科技学院学报(自然科学版)》2009,26(2):44-50
讨论了具有裂纹的无限长功能梯度/压电材料层合的SH波散射问题。在电渗透型边界条件情况下,将考虑的问题通过Fourier积分变换把混合边值问题的求解转化为对偶积分方程,利用Copson方法将得到的对偶积分方程转化为Fredholm积分方程再进行数值求解,得到了裂纹尖端的应力强度因子、电位移强度因子。最后讨论了材料梯度参数、入射角等因素对标准动应力强度因子的影响。 相似文献
15.
功能梯度材料板I型裂纹的断裂力学研究 总被引:8,自引:0,他引:8
重点对含I型裂纹正交异性功能梯度材料板的应力场和位移场进行理论分析。首次推出了正交异性功能梯度材料板的裂纹尖端应力场、位移场和梯度应力强度因子的理论计算公式。本研究成果对功能梯度材料的断裂分析有重要的理论价值和工程使用价值。 相似文献
16.
黄民海 《宁夏大学学报(自然科学版)》2006,27(2):111-114,118
利用复变方法,讨论了一类含界面裂缝的焊接问题.借助解析函数边值问题和奇异积分方程的基本理论,得到了弹性材料体内应力分布的封闭形式解,并导出了裂缝尖端应力强度因子的解析表达式. 相似文献
17.
研究了压电功能梯度材料层中平行于边界的动态反平面裂纹问题.数值方法为采用积分变换和位错函数法将问题简化为Cauchy奇异积分方程,最后给出数值结果,讨论了载荷耦合参数、材料分布形式和裂纹位置等因素对断裂行为的影响.结果发现,载荷耦合参数对规一化应力强度因子的影响比对规一化电位移强度因子的影响大,而电载荷的加载方向将决定动态应力强度因子在不同阶段的行为.此外,电载荷的存在总是促进裂纹扩展,但裂纹在负的电载荷作用下比在正的电载荷作用下更易扩展. 相似文献
18.
黄民海 《广西师范学院学报(自然科学版)》2006,23(2):1-4,19
讨论了一类含边界裂纹的弹性半平面孔洞焊接问题,根据平面弹性复变方法,问题归结为一类解析函数的边值问题,通过有效的分析方法和积分变换,进一步将问题简化为一类奇异积方程,证明了方程解的存在唯一,并对方程解的简化进行了研究,得到了弹性材料体内应力分布的封闭形式解. 相似文献