首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Ras proteins regulate cellular growth and differentiation, and are mutated in 30% of cancers. We have shown recently that Ras is activated on and transmits signals from the Golgi apparatus as well as the plasma membrane but the mechanism of compartmentalized signalling was not determined. Here we show that, in response to Src-dependent activation of phospholipase Cgamma1, the Ras guanine nucleotide exchange factor RasGRP1 translocated to the Golgi where it activated Ras. Whereas Ca(2+) positively regulated Ras on the Golgi apparatus through RasGRP1, the same second messenger negatively regulated Ras on the plasma membrane by means of the Ras GTPase-activating protein CAPRI. Ras activation after T-cell receptor stimulation in Jurkat cells, rich in RasGRP1, was limited to the Golgi apparatus through the action of CAPRI, demonstrating unambiguously a physiological role for Ras on Golgi. Activation of Ras on Golgi also induced differentiation of PC12 cells, transformed fibroblasts and mediated radioresistance. Thus, activation of Ras on Golgi has important biological consequences and proceeds through a pathway distinct from the one that activates Ras on the plasma membrane.  相似文献   

2.
Many receptors for neuropeptides and hormones are coupled with the heterotrimeric G(i) protein, which activates the p42/44 mitogen-activated protein kinase (ERK/MAPK) cascade through both the alpha- and betagamma-subunits of G(i). The betagamma-subunit activates the ERK/MAPK cascade through tyrosine kinase. Constitutively active G(alpha)i2 (gip2) isolated from adrenal and ovarian tumours transforms Rat-1 fibroblasts and also activates the ERK/MAPK cascade by an unknown mechanism. The ERK/MAPK pathway is activated by Ras, and is inhibited when the low-molecular-mass GTP-binding protein Rap1 antagonizes Ras function. Here we show that a novel isoform of Rapl GTPase-activating protein, called rap1GAPII, binds specifically to the alpha-subunits of the G(i) family of heterotrimeric G-proteins. Stimulation of the G(i)-coupled m2-muscarinic receptor translocates rap1GAPII from the cytosol to the membrane and decreases the amount of GTP-bound Rap1. This decrease in GTP-bound Rap1 activates ERK/MAPK. Thus, the alpha-subunit of G(i) activates the Ras-ERK/MAPK mitogenic pathway by membrane recruitment of rap1GAPII and reduction of GTP-bound Rap1.  相似文献   

3.
Lim KH  Ancrile BB  Kashatus DF  Counter CM 《Nature》2008,452(7187):646-649
Tumour cells become addicted to the expression of initiating oncogenes like Ras, such that loss of oncogene expression in established tumours leads to tumour regression. HRas, NRas or KRas are mutated to remain in the active GTP-bound oncogenic state in many cancers. Although Ras activates several proteins to initiate human tumour growth, only PI3K, through activation of protein kinase B (PKB; also known as AKT), must remain activated by oncogenic Ras to maintain this growth. Here we show that blocking phosphorylation of the AKT substrate, endothelial nitric oxide synthase (eNOS or NOS3), inhibits tumour initiation and maintenance. Moreover, eNOS enhances the nitrosylation and activation of endogenous wild-type Ras proteins, which are required throughout tumorigenesis. We suggest that activation of the PI3K-AKT-eNOS-(wild-type) Ras pathway by oncogenic Ras in cancer cells is required to initiate and maintain tumour growth.  相似文献   

4.
Epac proteins are activated by binding of the second messenger cAMP and then act as guanine nucleotide exchange factors for Rap proteins. The Epac proteins are involved in the regulation of cell adhesion and insulin secretion. Here we have determined the structure of Epac2 in complex with a cAMP analogue (Sp-cAMPS) and RAP1B by X-ray crystallography and single particle electron microscopy. The structure represents the cAMP activated state of the Epac2 protein with the RAP1B protein trapped in the course of the exchange reaction. Comparison with the inactive conformation reveals that cAMP binding causes conformational changes that allow the cyclic nucleotide binding domain to swing from a position blocking the Rap binding site towards a docking site at the Ras exchange motif domain.  相似文献   

5.
6.
Spred is a Sprouty-related suppressor of Ras signalling   总被引:19,自引:0,他引:19  
Cellular proliferation, and differentiation of cells in response to extracellular signals, are controlled by the signal transduction pathway of Ras, Raf and MAP (mitogen-activated protein) kinase. The mechanisms that regulate this pathway are not well known. Here we describe two structurally similar tyrosine kinase substrates, Spred-1 and Spred-2. These two proteins contain a cysteine-rich domain related to Sprouty (the SPR domain) at the carboxy terminus. In Drosophila, Sprouty inhibits the signalling by receptors of fibroblast growth factor (FGF) and epidermal growth factor (EGF) by suppressing the MAP kinase pathway. Like Sprouty, Spred inhibited growth-factor-mediated activation of MAP kinase. The Ras-MAP kinase pathway is essential in the differentiation of neuronal cells and myocytes. Expression of a dominant negative form of Spred and Spred-antibody microinjection revealed that endogenous Spred regulates differentiation in these types of cells. Spred constitutively associated with Ras but did not prevent activation of Ras or membrane translocation of Raf. Instead, Spred inhibited the activation of MAP kinase by suppressing phosphorylation and activation of Raf. Spred may represent a class of proteins that modulate Ras-Raf interaction and MAP kinase signalling.  相似文献   

7.
Many growth factors upon stimulation of their receptors induce the activity of extracellular signal-regulated kinases, ERKs, also known as MAP kinases. Several of these growth factors also activate the ras proto-oncogene product, p21ras (Ras), by stimulating the conversion of the inactive GDP-bound form of Ras to the active GTP-bound form. We have shown that direct introduction of p21ras oncoprotein into cells in the absence of growth factors activates ERKs within five minutes, which indicates that normal p21ras may be involved in the activation of ERKs by growth factors. Here we use a recombinant vaccinia virus expressing an interfering mutant of p21ras, RasAsn17, to investigate this question. In NIH3T3 cells that overexpress the insulin receptor, this recombinant virus inhibits insulin-induced activation of ERK2 completely, but there is no inhibition of insulin-induced activation of phosphatidylinositol-3-kinase. In rat-1 cells the recombinant virus inhibited ERK2 activity induced by platelet-derived growth factor (PDGF) but not by phorbol ester. We conclude that p21ras mediates insulin- and PDGF-induced activation of ERK2.  相似文献   

8.
M E Fortini  M A Simon  G M Rubin 《Nature》1992,355(6360):559-561
Cell-fate specification of R7 photoreceptors in the developing Drosophila eye depends on an inductive signal from neighbouring R8 cells. Mutations in three genes, sevenless (sev), bride-of-sevenless (boss) and seven-in-absentia (sina) cause the R7 precursor to become a non-neural cone cell. The sev gene encodes a receptor protein tyrosine kinase (Sev) localized on the R7 surface, activated by a boss-encoded ligand presented by R8. The sina gene encodes a nuclear factor required in R7. Reduction in the dosage of the Ras1 gene impairs Sev-mediated signalling, suggesting that activation of Ras1 may be an important consequence of Sev activation. We report here that Ras1 activation may account for all of the signalling action of Sev; an activated Ras1Va112 protein rescues the normal R7 precursor from transformation into a cone cell in sev and boss null mutants and induces the formation of supernumerary R7 cells. Similar activation of the Drosophila Ras2 protein does not produce these effects, demonstrating Ras protein specificity.  相似文献   

9.
The mammalian shc gene encodes two overlapping, widely expressed proteins of 46 and 52K, with a carboxy-terminal SH2 domain that binds activated growth factor receptors, and a more amino-terminal glycine/proline-rich region. These shc gene products (Shc) are transforming when overexpressed in fibroblasts. Shc proteins become phosphorylated on tyrosine in cells stimulated with a variety of growth factors, and in cells transformed by v-src (ref. 2), suggesting that they are tyrosine kinase targets that control a mitogenic signalling pathway. Here we report that tyrosine-phosphorylated Shc proteins form a specific complex with a non-phosphorylated 23K polypeptide encoded by the grb2/sem-5 gene. The grb2/sem-5 gene product itself contains an SH2 domain, which mediates binding to Shc, and is implicated in activation of the Ras guanine nucleotide-binding protein by tyrosine kinases in both Caenorhabditis elegans and mammalian cells. Consistent with a role in signalling through Ras, shc overexpression induced Ras-dependent neurite outgrowth in PC12 cells. These results suggest that Shc tyrosine phosphorylation can couple tyrosine kinases to Grb2/Sem-5, through formation of a Shc-Grb2/Sem-5 complex, and thereby regulate the mammalian Ras signalling pathway.  相似文献   

10.
Kim SJ  Kim YS  Yuan JP  Petralia RS  Worley PF  Linden DJ 《Nature》2003,426(6964):285-291
Group I metabotropic glutamate receptors (consisting of mGluR1 and mGluR5) are G-protein-coupled neurotransmitter receptors that are found in the perisynaptic region of the postsynaptic membrane. These receptors are not activated by single synaptic volleys but rather require bursts of activity. They are implicated in many forms of neural plasticity including hippocampal long-term potentiation and depression, cerebellar long-term depression, associative learning, and cocaine addiction. When activated, group I mGluRs engage two G-protein-dependent signalling mechanisms: stimulation of phospholipase C and activation of an unidentified, mixed-cation excitatory postsynaptic conductance (EPSC), displaying slow activation, in the plasma membrane. Here we report that the mGluR1-evoked slow EPSC is mediated by the TRPC1 cation channel. TRPC1 is expressed in perisynaptic regions of the cerebellar parallel fibre-Purkinje cell synapse and is physically associated with mGluR1. Manipulations that interfere with TRPC1 block the mGluR1-evoked slow EPSC in Purkinje cells; however, fast transmission mediated by AMPA-type glutamate receptors remains unaffected. Furthermore, co-expression of mGluR1 and TRPC1 in a heterologous system reconstituted a mGluR1-evoked conductance that closely resembles the slow EPSC in Purkinje cells.  相似文献   

11.
Delgado P  Fernández E  Dave V  Kappes D  Alarcón B 《Nature》2000,406(6794):426-430
Thymocytes from mice lacking the CD3delta chain of the T-cell receptor (TCR), unlike those of other CD3-deficient mice, progress from a CD4- CD8- double-negative to a CD4+ CD8+ double-positive stage. However, CD3delta-/- double-positive cells fail to undergo positive selection, by which double-positive cells differentiate into more mature thymocytes. Positive selection is also impaired in mice expressing inactive components of the Ras/mitogen activated protein (MAP) kinase signalling pathway. Here we show that CD3delta-/- thymocytes are defective in the induction of extracellular signal-regulated protein kinase (ERK) MAP kinases upon TCR engagement, whereas activation of other MAP kinases is unaffected. The requirement for CD3delta maps to its extracellular or transmembrane domains, or both, as expression of a tail-less CD3delta rescues both ERK activation and positive selection in CD3delta-/- mice. Furthermore, the defect correlates with severely impaired tyrosine phosphorylation of the linker protein LAT, and of the CD3zeta chain that is localized to membrane lipid rafts upon TCR engagement. Our data indicate that the blockade of positive selection of CD3delta-/- thymocytes may derive from defective tyrosine phosphorylation of CD3zeta in lipid rafts, resulting in impaired activation of the LAT/Ras/ERK pathway.  相似文献   

12.
Apoptotic cells release 'find-me' signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 overexpression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the 'selective' plasma membrane permeability of early apoptotic cells to specific dyes. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases.  相似文献   

13.
PDGF induction of tyrosine phosphorylation of GTPase activating protein   总被引:107,自引:0,他引:107  
The cascade of biochemical events triggered by growth factors and their receptors is central to understanding normal cell-growth regulation and its subversion in cancer. Ras proteins (p21ras) have been implicated in signal transduction pathways used by several growth factors, including platelet-derived growth factor (PDGF). These guanine nucleotide-binding Ras proteins specifically interact with a cellular GTPase-activating protein (GAP). Here we report that in intact quiescent fibroblasts, both AA and BB homodimers of PDGF rapidly induce tyrosine phosphorylation of GAP under conditions in which insulin and basic fibroblast growth factor (bFGF) are ineffective. Although GAP is located predominantly in the cytosol, most tyrosine-phosphorylated GAP is associated with the cell membrane, the site of p21ras biological activity. These results provide a direct biochemical link between activated PDGF-receptor tyrosine kinases and the p21ras-GAP mitogenic signalling system.  相似文献   

14.
15.
Darios F  Davletov B 《Nature》2006,440(7085):813-817
Growth of neurite processes from the cell body is the critical step in neuronal development and involves a large increase in cell membrane surface area. Arachidonic-acid-releasing phospholipases are highly enriched in nerve growth cones and have previously been implicated in neurite outgrowth. Cell membrane expansion is achieved through the fusion of transport organelles with the plasma membrane; however, the identity of the molecular target of arachidonic acid has remained elusive. Here we show that syntaxin 3 (STX3), a plasma membrane protein, has an important role in the growth of neurites, and also serves as a direct target for omega-6 arachidonic acid. By using syntaxin 3 in a screening assay, we determined that the dietary omega-3 linolenic and docosahexaenoic acids can efficiently substitute for arachidonic acid in activating syntaxin 3. Our findings provide a molecular basis for the previously established action of omega-3 and omega-6 polyunsaturated fatty acids in membrane expansion at the growth cones, and represent the first identification of a single effector molecule for these essential nutrients.  相似文献   

16.
Matheny SA  Chen C  Kortum RL  Razidlo GL  Lewis RE  White MA 《Nature》2004,427(6971):256-260
The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.  相似文献   

17.
Rehmann H  Das J  Knipscheer P  Wittinghofer A  Bos JL 《Nature》2006,439(7076):625-628
Epac proteins (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors (GEFs) for the small GTP-binding proteins Rap1 and Rap2 that are directly regulated by the second messenger cyclic AMP and function in the control of diverse cellular processes, including cell adhesion and insulin secretion. Here we report the three-dimensional structure of full-length Epac2, a 110-kDa protein that contains an amino-terminal regulatory region with two cyclic-nucleotide-binding domains and a carboxy-terminal catalytic region. The structure was solved in the absence of cAMP and shows the auto-inhibited state of Epac. The regulatory region is positioned with respect to the catalytic region by a rigid, tripartite beta-sheet-like structure we refer to as the 'switchboard' and an ionic interaction we call the 'ionic latch'. As a consequence of this arrangement, the access of Rap to the catalytic site is sterically blocked. Mutational analysis suggests a model for cAMP-induced Epac activation with rigid body movement of the regulatory region, the features of which are universally conserved in cAMP-regulated proteins.  相似文献   

18.
B Dickson  F Sprenger  D Morrison  E Hafen 《Nature》1992,360(6404):600-603
Specification of the R7 cell fate in the developing Drosophila eye requires activation of the Sevenless (Sev) receptor tyrosine kinase, located on the surface of the R7 precursor cell, by its interaction with the Boss protein, expressed on the surface of the neighbouring R8 cell. Four genes that participate in the intracellular transmission of this signal have so far been identified and molecularly characterized: Ras1, Sos, Gap1 and sina (refs 4-8). The Drosophila homologue of the mammalian Raf-1 serine/threonine kinase, which has been implicated in signal transduction pathways activated by many receptor tyrosine kinases (reviewed in refs 9 and 10), is encoded by the raf locus (also known as l(1)polehole, Draf-1 or Draf). Here we show that the Drosophila Raf serine/threonine kinase also plays a crucial role in the R7 pathway: the response to Sev activity is dependent on raf function, and a constitutively activated Raf protein can induce R7 cell development in the absence of sev function. We also present genetic evidence suggesting that Raf acts downstream of Ras1 and upstream of Sina in this signal transduction cascade.  相似文献   

19.
Phosphoinositide-3-OH kinase (PI(3)K), activated through growth factor stimulation, generates a lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 is instrumental in signalling pathways that trigger cell activation, cytoskeletal rearrangement, survival and other reactions. However, some targets of PtdIns(3,4,5)P3 are yet to be discovered. We demonstrate that SWAP-70, a unique signalling protein, specifically binds PtdIns(3,4,5)P3. On stimulation by growth factors, cytoplasmic SWAP-70, which is dependent on PI(3)K but independent of Ras, moved to cell membrane rearrangements known as ruffles. However, mutant SWAP-70 lacking the ability to bind PtdIns(3,4,5)P3 blocked membrane ruffling induced by epidermal growth factor or platelet-derived growth factor. SWAP-70 shows low homology with Rac-guanine nucleotide exchange factors (GEFs), and catalyses PtdIns(3,4,5)P3-dependent guanine nucleotide exchange to Rac. SWAP-70-deficient fibroblasts showed impaired membrane ruffling after stimulation with epidermal growth factor, and failed to activate Rac fully. We conclude that SWAP-70 is a new type of Rac-GEF which, independently of Ras, transduces signals from tyrosine kinase receptors to Rac.  相似文献   

20.
Rap1 is a Ras-like guanine-nucleotide-binding protein (GNBP) that is involved in a variety of signal-transduction processes. It regulates integrin-mediated cell adhesion and might activate extracellular signal-regulated kinase. Like other Ras-like GNBPs, Rap1 is regulated by guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). These GAPs increase the slow intrinsic GTPase reaction of Ras-like GNBPs by many orders of magnitude and allow tight regulation of signalling. The activation mechanism involves stabilization of the catalytic glutamine of the GNBP and, in most cases, the insertion of a catalytic arginine of GAP into the active site. Rap1 is a close homologue of Ras but does not possess the catalytic glutamine essential for GTP hydrolysis in all other Ras-like and Galpha proteins. Furthermore, RapGAPs are not related to other GAPs and apparently do not use a catalytic arginine residue. Here we present the crystal structure of the catalytic domain of the Rap1-specific Rap1GAP at 2.9 A. By mutational analysis, fluorescence titration and stopped-flow kinetic assay, we demonstrate that Rap1GAP provides a catalytic asparagine to stimulate GTP hydrolysis. Implications for the disease tuberous sclerosis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号