共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before approximately 2.2 billion years (Gyr) ago. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO3) in some pre-2.2-Gyr palaeosols to atmospheric CO2 concentrations that would have been too low to have provided the necessary greenhouse effect. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO2 concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O2 concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe3+)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H2-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO2 concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO2 alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth. 相似文献
2.
Microorganisms have flourished in the oceans since at least 3.8 billion years (3.8 Gyr) ago, but it is not at present clear when they first colonized the land. Organic matter in some Au/U-rich conglomerates and ancient soils of 2.3-2.7 Gyr age has been suggested as remnants of terrestrial organisms. Some 2.7-Gyr-old stromatolites have also been suggested as structures created by terrestrial organisms. However, it has been disputed whether this organic matter is indigenous or exogenic, and whether these stromatolites formed in marine or fresh water. Consequently, the oldest undisputed remnants of terrestrial organisms are currently the 1.2-Gyr-old microfossils from Arizona, USA. Unusually carbonaceous ancient soils--palaeosols--have been found in the Mpumalanga Province (Eastern Transvaal) of South Africa. Here we report the occurrences, elemental ratios (C, H, N, P) and isotopic compositions of this organic matter and its host rocks. These data show that the organic matter very probably represents remnants of microbial mats that developed on the soil surface between 2.6 and 2.7 Gyr ago. This places the development of terrestrial biomass more than 1.4 billion years earlier than previously reported. 相似文献
3.
The composition of the Earth's early atmosphere is a subject of continuing debate. In particular, it has been suggested that elevated concentrations of atmospheric carbon dioxide would have been necessary to maintain normal surface temperatures in the face of lower solar luminosity in early Earth history. Fossil weathering profiles, known as palaeosols, have provided semi-quantitative constraints on atmospheric oxygen partial pressure (pO2) before 2.2 Gyr ago. Here we use the same well studied palaeosols to constrain atmospheric pCO2 between 2.75 and 2.2 Gyr ago. The observation that iron lost from the tops of these profiles was reprecipitated lower down as iron silicate minerals, rather than as iron carbonate, indicates that atmospheric pCO2 must have been less than 10(-1.4) atm--about 100 times today's level of 360 p.p.m., and at least five times lower than that required in one-dimensional climate models to compensate for lower solar luminosity at 2.75 Gyr. Our results suggest that either the Earth's early climate was much more sensitive to increases in pCO2 than has been thought, or that one or more greenhouse gases other than CO2 contributed significantly to the atmosphere's radiative balance during the late Archaean and early Proterozoic eons. 相似文献
4.
The quantification of greenhouse gases present in the Archaean atmosphere is critical for understanding the evolution of atmospheric oxygen, surface temperatures and the conditions for life on early Earth. For instance, it has been argued that small changes in the balance between two potential greenhouse gases, carbon dioxide and methane, may have dictated the feedback cycle involving organic haze production and global cooling. Climate models have focused on carbon dioxide as the greenhouse gas responsible for maintaining above-freezing surface temperatures during a time of low solar luminosity. However, the analysis of 2.75-billion-year (Gyr)-old palaeosols--soil samples preserved in the geologic record--have recently provided an upper constraint on atmospheric carbon dioxide levels well below that required in most climate models to prevent the Earth's surface from freezing. This finding prompted many to look towards methane as an additional greenhouse gas to satisfy climate models. Here we use model equilibrium reactions for weathering rinds on 3.2-Gyr-old river gravels to show that the presence of iron-rich carbonate relative to common clay minerals requires a minimum partial pressure of carbon dioxide several times higher than present-day values. Unless actual carbon dioxide levels were considerably greater than this, climate models predict that additional greenhouse gases would still need to have a role in maintaining above-freezing surface temperatures. 相似文献
5.
The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion. 相似文献
6.
Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago 总被引:1,自引:0,他引:1
The hypothesis that the establishment of a permanently oxygenated atmosphere at the Archaean-Proterozoic transition (approximately 2.5 billion years ago) occurred when oxygen-producing cyanobacteria evolved is contradicted by biomarker evidence for their presence in rocks 200 million years older. To sustain vanishingly low oxygen levels despite near-modern rates of oxygen production from approximately 2.7-2.5 billion years ago thus requires that oxygen sinks must have been much larger than they are now. Here we propose that the rise of atmospheric oxygen occurred because the predominant sink for oxygen in the Archaean era-enhanced submarine volcanism-was abruptly and permanently diminished during the Archaean-Proterozoic transition. Observations are consistent with the corollary that subaerial volcanism only became widespread after a major tectonic episode of continental stabilization at the beginning of the Proterozoic. Submarine volcanoes are more reducing than subaerial volcanoes, so a shift from predominantly submarine to a mix of subaerial and submarine volcanism more similar to that observed today would have reduced the overall sink for oxygen and led to the rise of atmospheric oxygen. 相似文献
7.
According to the 'Faint Young Sun' paradox, during the late Archaean eon a Sun approximately 20% dimmer warmed the early Earth such that it had liquid water and a clement climate. Explanations for this phenomenon have invoked a denser atmosphere that provided warmth by nitrogen pressure broadening or enhanced greenhouse gas concentrations. Such solutions are allowed by geochemical studies and numerical investigations that place approximate concentration limits on Archaean atmospheric gases, including methane, carbon dioxide and oxygen. But no field data constraining ground-level air density and barometric pressure have been reported, leaving the plausibility of these various hypotheses in doubt. Here we show that raindrop imprints in tuffs of the Ventersdorp Supergroup, South Africa, constrain surface air density 2.7 billion years ago to less than twice modern levels. We interpret the raindrop fossils using experiments in which water droplets of known size fall at terminal velocity into fresh and weathered volcanic ash, thus defining a relationship between imprint size and raindrop impact momentum. Fragmentation following raindrop flattening limits raindrop size to a maximum value independent of air density, whereas raindrop terminal velocity varies as the inverse of the square root of air density. If the Archaean raindrops reached the modern maximum measured size, air density must have been less than 2.3?kg?m(-3), compared to today's 1.2?kg?m(-3), but because such drops rarely occur, air density was more probably below 1.3?kg?m(-3). The upper estimate for air density renders the pressure broadening explanation possible, but it is improbable under the likely lower estimates. Our results also disallow the extreme CO(2) levels required for hot Archaean climates. 相似文献
8.
9.
松嫩平原距今150年湿地景观结构重建 总被引:8,自引:0,他引:8
距今150年前的松嫩平原,生态环境基本保存着原始状态.但百余年的高强度开发,已使生态环境和湿地遭到严重破坏.通过实地考察、自然地理要素的相关建模,以及遥感分析、GIS制图和文献考证等方法的综合运用,首次对距今150年松嫩平原的湿地景观进行了恢复.结果表明,当时该区湿地面积广大,为7.64万km2,占平原总面积的37.8%;湿地的类型有河流湿地、湖泊湿地和沼泽湿地.湿地在宏观景观结构上的显著特点是:湿地分布具有区域广布性;湿地结构具有环状等级序;湿地类型具有东西异质性;湿地网络属于中央汇结网络;沼泽湿地具有基质功能;湿地生态系统具有丰富的多样性.松嫩平原湿地原始景观的重建,为该平原湿地和其他退化生态环境的恢复与重建提供了理论基础,在谋划区域可持续发展等方面,具有重要的实践意义. 相似文献
10.
Genzel R Tacconi LJ Eisenhauer F Schreiber NM Cimatti A Daddi E Bouché N Davies R Lehnert MD Lutz D Nesvadba N Verma A Abuter R Shapiro K Sternberg A Renzini A Kong X Arimoto N Mignoli M 《Nature》2006,442(7104):786-789
Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger. 相似文献
11.
The extent of climate variability during the current interglacial period, the Holocene, is still debated. Temperature records derived from central Greenland ice cores show one significant temperature anomaly between 8,200 and 8,100 years ago, which is often attributed to a meltwater outflow into the North Atlantic Ocean and a slowdown of North Atlantic Deep Water formation--this anomaly provides an opportunity to study such processes with relevance to present-day freshening of the North Atlantic. Anomalies in climate proxy records from locations around the globe are often correlated with this sharp event in Greenland. But the anomalies in many of these records span 400 to 600 years, start from about 8,600 years ago and form part of a repeating pattern within the Holocene. More sudden climate changes around 8,200 years ago appear superimposed on this longer-term cooling. The compounded nature of the signals implies that far-field climate anomalies around 8,200 years ago cannot be used in a straightforward manner to assess the impact of a slowdown of North Atlantic Deep Water formation, and the geographical extent of the rapid cooling event 8,200 years ago remains to be determined. 相似文献
12.
The fraction of ionized hydrogen left over from the Big Bang provides evidence for the time of formation of the first stars and quasar black holes in the early Universe; such objects provide the high-energy photons necessary to ionize hydrogen. Spectra of the two most distant known quasars show nearly complete absorption of photons with wavelengths shorter than the Lyman alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift of z approximately 6.3, about one billion years after the Big Bang. Here we show that the IGM surrounding these quasars had a neutral hydrogen fraction of tens of per cent before the quasar activity started, much higher than the previous lower limits of approximately 0.1 per cent. Our results, when combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination therefore suggest the presence of a second peak in the mean ionization history of the Universe. 相似文献
13.
LI XiaoQiang ZHOU XinYing ZHANG HongBin ZHOU Jie SHANG Xue DODSON John 《科学通报(英文版)》2007,52(10):1372-1378
Pollen, plant seeds and phytoliths from an AMS dated sediment profile at the Xishanping site indicate that the cultivation of rice might start no later than 5070 cal. a BP in the region of Tianshui, Gansu Province. It continued from 5070 to 4300 cal. a BP. This is so far the oldest and the most northwestern record of cultivated rice in Neolithic China, which extends the known region of prehistoric rice cultivation at least 2° longitude to the west. This finding provides important evidence for reconstructing the cultivation region of rice at 5000 a BP (an important time period), and its spreading history in East Asia, during the Neolithic. 相似文献
14.
Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago 总被引:1,自引:0,他引:1
Næraa T Scherstén A Rosing MT Kemp AI Hoffmann JE Kokfelt TF Whitehouse MJ 《Nature》2012,485(7400):627-630
Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate tectonic processes. 相似文献
15.
Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago 总被引:15,自引:0,他引:15
Global climate change around 3-4 Myr ago is thought to have influenced the evolution of hominids, via the aridification of Africa, and may have been the precursor to Pleistocene glaciation about 2.75 Myr ago. Most explanations of these climatic events involve changes in circulation of the North Atlantic Ocean due to the closing of the Isthmus of Panama. Here we suggest, instead, that closure of the Indonesian seaway 3-4 Myr ago could be responsible for these climate changes, in particular the aridification of Africa. We use simple theory and results from an ocean circulation model to show that the northward displacement of New Guinea, about 5 Myr ago, may have switched the source of flow through Indonesia-from warm South Pacific to relatively cold North Pacific waters. This would have decreased sea surface temperatures in the Indian Ocean, leading to reduced rainfall over eastern Africa. We further suggest that the changes in the equatorial Pacific may have reduced atmospheric heat transport from the tropics to higher latitudes, stimulating global cooling and the eventual growth of ice sheets. 相似文献
16.
ZHENG YunFei SUN GuoPing CHEN XuGao 《科学通报(英文版)》2007,52(12):1654-1660
The abscission layer formed on a pedicel situated at the basal part of a short rachilla is an important characteristic for discriminating between wild, japonica, and indica rice. The short rachillae of paddy rice grains excavated from the Kuahuqiao, Luojiajiao, and Tianluoshan sites, located in the lower reaches of the Yangtze River and dating to 7000 years old, were observed. The results showed that the short rachillae could be divided into two types: a wild type and japonica type. These results indicated that the rice had been domesticated, but was a primitive cultivated rice that retained some of the characteristics of wild rice. The results also suggested that the rice was changing to resemble japonica type rice. Based on the ratios of wild and japonica types, it was inferred that rice domestication began 10000 years ago. 相似文献
17.
Aortoduodenal fistula following aortic reconstruction of a pseudoaneurysm caused by stab wound 12 years ago 下载免费PDF全文
Jian-cang Zhou Qiu-ping Xu Lai-gen Shen Kong-han Pan Yi-ping Mou 《浙江大学学报(自然科学英文版)》2009,10(5):400-403
Gastrointestinal bleeding due to aortoenteric fistula is extremely rare. Aortoenteric fistula is difficult to be diagnosed timely and entails a significant morbidity and mortality. Herein, we present an uncommon case of gastrointestinal bleeding caused by aortoduodenal fistula, which was a complication of a successful aortic reconstruction 4 months ago for an aortic pseudoaneurysm resulted from a stab wound 12 years ago. An urgent laparotomy confirmed an aortoduodenal fistula and repaired the defects in aorta and duodenum, but a prolonged shock led to the patient’s death. In summary, early diagnosis and surgical intervention for aortoenteric fistula are vital for survival. 相似文献
18.
Le Fèvre O Paltani S Arnouts S Charlot S Foucaud S Ilbert O McCracken HJ Zamorani G Bottini D Garilli B Le Brun V Maccagni D Picat JP Scaramella R Scodeggio M Tresse L Vettolani G Zanichelli A Adami C Bardelli S Bolzonella M Cappi A Ciliegi P Contini T Franzetti P Gavignaud I Guzzo L Iovino A Marano B Marinoni C Mazure A Meneux B Merighi R Pellò R Pollo A Pozzetti L Radovich M Zucca E Arnaboldi M Bondi M Bongiorno A Busarello G Gregorini L Lamareille F Mathez G Mellier Y Merluzzi P Ripepi V 《Nature》2005,437(7058):519-521
To understand the evolution of galaxies, we need to know as accurately as possible how many galaxies were present in the Universe at different epochs. Galaxies in the young Universe have hitherto mainly been identified using their expected optical colours, but this leaves open the possibility that a significant population remains undetected because their colours are the result of a complex mix of stars, gas, dust or active galactic nuclei. Here we report the results of a flux-limited I-band survey of galaxies at look-back times of 9 to 12 billion years. We find 970 galaxies with spectroscopic redshifts between 1.4 and 5. This population is 1.6 to 6.2 times larger than previous estimates, with the difference increasing towards brighter magnitudes. Strong ultraviolet continua (in the rest frame of the galaxies) indicate vigorous star formation rates of more than 10-100 solar masses per year. As a consequence, the cosmic star formation rate representing the volume-averaged production of stars is higher than previously measured at redshifts of 3 to 4. 相似文献