首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
借助矩阵指数函数和状态转移矩阵的概念,结合线性代数和微分方程的有关结论.给出了变系数微分方程组的矩阵解法。  相似文献   

2.
一阶线性常系数微分方程组的矩阵解法   总被引:8,自引:0,他引:8  
借助矩阵指数函数和矩阵函数导数的概念,结合线性代数和微分方程的有关结论。给出了一阶线性常系数微分方程组的矩阵解法。  相似文献   

3.
借助矩阵指数函数和状态转移矩阵的概念,结合线性代数和微分方程的有关结论,给出了一阶线性非齐次微分方程组的矩阵解法.  相似文献   

4.
借助矩阵指数函数和状态转移矩阵的概念,结合线性代数和微分方程的有关结论,给出了n阶线性变系数微分方程初值问题的矩阵解法.  相似文献   

5.
基于一阶变系数线性齐次微分方程组dY/dx=Af(x)Y(f(x)为可积函数)的通解基础上,进一步探讨一类一阶变系数线性微分方程组的解法,给出了其通解的结构定理。  相似文献   

6.
借助矩阵指数函数和矩阵函数导数的概念,结合线性代数和微分方程的有关结论,给出了一阶线性常系数微分方程组的矩阵解法.  相似文献   

7.
对于系数矩阵与对角矩阵相似的常系数微分方程组,给出了其求解的简便方法.  相似文献   

8.
9.
变系数线性微分方程组的一类可解型   总被引:1,自引:0,他引:1  
研究了一类可化为Euler方程的变系数线性微分方程组.  相似文献   

10.
对于二元一阶常系数线性微分方程组:x′=Ax+f(t),引入特征根方程|A-λE|=0的特征行向量K=(k_1,k_2)(其中K满足:K(A-λE)=0)概念,将二元一阶常系数线性微分方程组,化为二元一次代数线性方程形式:(K_2x_2)′=λ(K_2x_2)+(K_2f),(K_1x_1)′=λ(K_1x_1)+K_1x_2+K_1f,从中给出原微分方程组的解.  相似文献   

11.
借助矩阵指数函数和状态转移矩阵的概念,结合线性代数和微分方程的有关结论,给出了n阶线性齐次微分方程初值问题的矩阵解法.  相似文献   

12.
本文给出了广义全微分方程的定义,得到了高阶变系数线性微分方程化为全微分方程的充要条件和通解计算公式.  相似文献   

13.
把常系数齐次线性微分方程施以变换y=zerx所得的方程写成复合微分方程,再转化为非齐次微分方程,用待定系数法或数学归纳法,导出了常系数齐次线性微分方程的通解是它的两个特定的互补子方程的通解的和,从而进一步导出这类微分方程的通解  相似文献   

14.
二阶常系数线性非齐次微分方程的通解   总被引:1,自引:0,他引:1  
在已知二阶常系数齐次微分方程y″+py’+gy=0的一个特解的条件下,讨论了求二阶常系数线性非齐次微分方程y″+py’+qy=f(x)的一个特解的方法,从而根据齐次方程的特征根的不同情形给出了非齐次微分方程的通解公式.  相似文献   

15.
运用代换、乘因子和变上限积分,给出二阶常系数线性微分方程的综合解法,以及此综合解法在求解更高阶常系数线性方程中的运用。  相似文献   

16.
给出了常系数线性微分方程组新的求解方法。常系数线性微分方程组的求解通常有2种基本方法:复若当标准形法和指数矩阵法。尽管这2种方法在处理低维系统时是比较成功的,但在处理高维系统时,其效率将会明显降低。因此,有必要对基本方法作一些结构上的改进,以提高计算的效率。以广义特征向量链、指数矩阵和矩阵的秩为工具,分3种情形讨论了重根情形下常系数线性微分方程组的解矩阵表示,建立了统一的代数结构,并对后2种情形,给出了相应的实例,以说明方法的有效性。  相似文献   

17.
论述了二阶线性常微分方程y″+A(x)y′+B(x)y=D(x)在满足B^2+A′B—AB^=m和B″-(AB)′=m的条件时可用初等积分法求其通解,并推出了求解公式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号