首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为实现建筑用玻璃与可伐合金的可靠激光封接,本文针对影响封接质量的主要因素(温度、时间、粗糙度及氧化层)对两者润湿性能的影响开展了研究.当保温温度由800℃提高至900℃,液态玻璃黏度降低致使其在可伐合金表面的流动性增强,润湿角由69.5°降低至31.1°.在850℃下延长保温时间(5~40 min),液态玻璃在低黏度条件下有充分的时间铺展,润湿角降幅为30%.随着可伐合金表面粗糙度的提高,液态玻璃向四周扩散需要克服的势垒增加,当粗糙度值Ra由0.186μm升至0.563μm时,润湿角由46.9°升至69.5°.由于可伐合金表面氧化层可与液体玻璃发生扩散而形成较强离子键,使得两者润湿性能显著提高,润湿角降低幅度达到23.6%.因此,在实际激光封接过程中,增加保温温度和时间、降低钢板表面粗糙度及钢板预氧化处理将有效地提高玻璃与钢板的润湿性能.  相似文献   

2.
A novel type of ZnO-Al2O3-B2O3-SiO2 glass-ceramics sealing to Kovar in electronic packaging was developed, whose thermal expansion coefficient and electrical resistance are 5.2×10-6/℃ and over 1×1013 Ω·cm, respectively. The major crystalline phases in the glass-ceramic seals were ZnAl2O4, ZnB2O4, and NaSiAl2O4. The dielectric resistance of the glass-ceramic could be remarkably enhanced through the control of alkali metal ions into crystal lattices. It was found that crystallization happened first on the surface of the sample, leaving the amorphous phase in the inner, which made the glass suitable for sealing. The glass-ceramic showed better wetting on the Kovar surface, and sealing atmosphere and temperature had great effect on the wetting angle. Strong interracial bonding was obtained, which was mainly attributed to the interracial reaction between SiO2 and FeO or Fe3O4.  相似文献   

3.
对冷变形后的Co36Fe36Cr18Ni8Ti2合金在700 ℃和800 ℃下再结晶退火,制备成具有高强度及良好耐蚀性的多主元合金。采用电子背散射衍射(electron back-scattered diffraction, EBSD)表征了合金的相分布、再结晶组织以及晶界分布等微观结构特征,采用静态拉伸试验测试了合金的力学性能。结果表明,700 ℃退火的合金断后伸长率较低,但其抗拉强度与屈服强度分别达到了1 038和956 MPa。采用电化学工作站与扫描电子显微镜(scanning electron microscope, SEM)表征了合金在模拟体液中的耐蚀性。结果表明,700 ℃退火的样品具有较好的耐蚀性,腐蚀后的样品表面较为均匀。结合力学性能可知,700 ℃退火的样品具有作为新型医用金属材料的潜力。  相似文献   

4.
An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600℃ was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586℃) and the high-melting-point intermetallic compound AlTiSi (840℃). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.  相似文献   

5.
分析了Kovar合金与K4玻璃阳极焊的结合机理和主要工艺参数对连接过程的影响,提出了金属与玻璃的连接机理为电场和温度场作用下的离子迁移、复合氧化物过渡层的生成和沉积,电压、温度、压力及试样表面质量是影响离子迁移和结合的主要因素,相匹配的热膨胀系数是防止开裂保证良好连接的必要条件。  相似文献   

6.
The microstructures and tensile behaviours of cerium (Ce) doped polycrystalline Co-9Al-4.5W-4.5Mo-2Ta-0.02B alloys (doped 0.05 and 0.2 at.% Ce) at room temperature (RT) and 600–800 °C were investigated. In-suit tensile test under SEM was conducted to understand the deformation and damage mechanisms at RT. Aged at 800 °C for 50 h, the 0.05Ce alloy consisted of a Co solid-solution matrix (γ-CoSS) and nano-scale cuboidal γ′-Co3(Al, W) precipitates, while for the 0.2Ce alloy, κ-Co3(W, Mo) precipitates and γ′-depleted zone were present at the grain boundaries in addition to the γ/γ′ microstructure. The 0.05Ce alloy exhibited flow stress anomalies at 700 °C. With higher Σ1∼3 boundary fraction and cleaned-up grain boundary, the 0.05Ce alloy always showed greater strength and elongation than the 0.2 Ce alloy with the grain boundary precipitates at temperatures up to 800 °C. Doped 0.05 at.% Ce made the Co-9Al-4.5W-4.5Mo-2Ta-0.02B alloy have an excellent elongation of 6.1% at 700 °C, owing to a mixed transgranular dimple plus intergranular cleavage fracture. The slip bands transferring through the low-angle grain boundary and slipping of the γ′-Co3(Al, W) in the 0.5Ce alloy resulted in excellent ductility of 20.4% at RT.  相似文献   

7.
通过测量不同工艺条件下玻璃绝缘子中的气孔率和最大气泡直径,以及观察底盘表面的玻璃飞溅情况,研究了熔封气氛、熔封温度、熔封时间、氧化膜类型和厚度对玻璃绝缘子中气孔率和玻璃飞溅的影响.结果表明,玻璃绝缘子中气孔率与可伐合金底盘表面的飞溅程度有一定的关系.可伐合金表面Fe3O4氧化物与玻璃中SiO2发生化学反应是玻璃绝缘子中气泡的一个重要来源,也是引起玻璃飞溅的因素.熔封气氛和氧化膜厚度对气孔率和玻璃飞溅影响最大.推荐的工艺条件是在可伐合金表面生成厚度约1μm的FeO氧化膜,然后与玻坯在950~980℃工厂条件的气氛中熔封30~40 min.  相似文献   

8.
在假设玻璃中只有一种正离子(Na^ 离子)可移动,Na耗尽层中离子仅出现在耗尽层边的情况下,根据电学方程得出玻璃-Kovar合金阳极连接中耗尽层厚度变化与连接时间的关系。  相似文献   

9.
A series of SiO2 glasses were synthesized by using spectroscopically pure silica on the YJ-3000 multi-anvil apparatus at 355–445°C and 2.0–5.5GPa. Their spectroscopic characteristics resemble that of the high-density quartz glass. In the meantime, the IR spectra of SiO2 glasses show that a small amount of water exists in SiO2 glasses in the form of OH-. It may be due simply to the small amount of water that contributes significantly to the amorphism of SiO2. The determination of refraction indices of SiO2 glasses shows that the refraction indices of SiO2 glasses and the high-density quartz glass are in good logarithmic relation with synthetic pressures.  相似文献   

10.
The creep behavior and microstructure of a Ni3Al base single crystal alloy IC6SX with [001] orientation under the testing conditions of 760 ℃/593 MPa, 980 ℃/205 MPa, and 1100 ℃/75 MPa were investigated. The experimental results showed that Alloy IC6SX had good creep resistance and its creep resistance at elevated temperatures was similar to the second generation nickel-base single crystal alloy containing Re. TEM analysis indicated that the dislocation configuration and movement pattern were different under different temperature and stress conditions. It has been found that under the test condition of 1070 ℃/137 MPa the dislocations moved within the γ channel during the primary creep stage, and the motion of dislocations were prevented by the matrix of γ′ phase, which reduced the creep rate of the alloy. In the secondary creep stage, dislocations cut into the γ′ phase from the γ/γ′ interface. However in the third creep stage, the dislocation pileups were observed in both γ and γ′ phase, and dislocation multiplication occurred when the dislocations with different Burgers vector met and reacted each other.  相似文献   

11.
A high Nb containing TiAl alloy was prepared from the pre-alloyed powder of Ti-45Al-8.5Nb-0.2B-0.2W-0.02Y (at%) by spark plasma sintering (SPS). Its high-temperature mechanical properties and compressive deformation behavior were investigated in a temperature range of 700 to 1050℃ and a strain rate range of 0.002 to 0.2 s-1. The results show that the high-temperature mechanical properties of the high Nb containing TiAl alloy are sensitive to deformation temperature and strain rate, and the sensitivity to strain rate tends to rise with the deformation temperature increasing. The hot workability of the alloy is good at temperatures higher than 900℃, while fracture occurs at lower temperatures. The flow curves of the samples compressed at or above 900℃ exhibit obvious flow softening after the peak stress. Under the deformation condition of 900-1050℃ and 0.002-0.2 s-1, the interrelations of peak flow stress, strain rate, and deformation temperature follow the Arrhenius' equation modified by a hyperbolic sine function with a stress exponent of 5.99 and an apparent activation energy of 441.2 kJ·mol-1.  相似文献   

12.
ThegeomagneticfieldwasfoundtobeofnormalpolarityforalongtimeduringtheCretaceousbyHelsleyandSteiner[1]andthiswaslaternamedasCretaceousNormalSuperchron(CNS)[2].TheCNSlastedalmost37Ma(120—83Ma).Severalabnormalgeologicalevents,suchasanoceanicanoxicevent,alargenumberofvol-canismandglobalclimaticwarmingduringtheCNShavebeenreported[3—11].Thishasledtomanyquestionsbeingraised.IsittruethattheEarthsmagneticfielddidnotreverseatallintheCNS?Ifitdidreverse,howmanytimesandwhendidthishappen?Istherea…  相似文献   

13.
To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500℃ and 700℃, M7C3 exits below 720℃, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280℃, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively.  相似文献   

14.
Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of α-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room temperature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.  相似文献   

15.
In the present work, Si C ceramics was fabricated with Al N using B_4 C and C as sintering aids by a solid-state pressureless-sintered method. The effects of Al N contents on the densification, mechanical properties, phase compositions, and microstructure evolutions of as-obtained Si C ceramics were thoroughly investigated. Al N was found to promote further densification of the Si C ceramics due to its evaporation over 1800 °C,transportation, and solidification in the pores resulted from Si C grain coarsening. The highest relative density of 99.65% was achieved for Si C sample with 15.0 wt% Al N by the pressureless-sintered method at 2130 °C for 1 h in Ar atmosphere. Furthermore, the fracture mechanism for Si C ceramics containing Al N tended to transfer from single transgranular fracture mode to both transgranular fracture and intergranular fracture modes when the sample with 30.0 wt% Al N sintered at 1900 °C for 1 h in Ar. Also, Si C ceramics with 30.0 wt% Al N exhibited the highest fracture toughness of 5.23 MPa m~(1/2) when sintered at 1900 °C.  相似文献   

16.
Ni3Al-based single crystal alloy IC6SX with different crystal orientations were prepared by seed crystal method. The microstructure and heat treatment of the alloy were investigated. The results showed that the microstructure of the alloy was in dendrite structure, and the crystal orientation had significant effect on the dendrite morphology of this alloy. The precipitated phases of (MoNi)6C and NiMo appeared in the microstructure of the three alloys with different crystal orientations during solidification process. Compared with other two alloys, the volume fractions of precipitated phases of both (MoNi)6C and NiMo was the most in the alloy with [111] orientation and the least in the alloy with [001] orientation. The solidus and liquidus temperatures of the alloy IC6SX tested by differential scanning calorimetry (DSC) were 1356 °C and 1387 °C, respectively. Meanwhile, the effect of different solution temperatures on the microstructure of the alloy with different orientations was studied. The results showed that the precipitated phases of (MoNi)6C and NiMo were eliminated with the solid solution treatment under the condition of 1300 °C/10 h. However, the incipient melting of the alloys occurred due to the dissolution of low melting point phases. As the temperature dropped to 1280 °C, the area of incipient melting in the alloy with different orientations decreased gradually. However, there was no incipient melting appearing in the three alloys with different orientations when the solution treatment temperature dropped to 1260 °C.  相似文献   

17.
A hot-extruded Mg-5Ga alloy was subjected to ageing treatment at 150 ?°C, 190 ?°C and 230 ?°C. The microstructures and mechanical properties of the extruded and aged alloy were examined in this study. Microstructure examinations suggested that particle-shaped and rod-shaped Mg5Ga2 were precipitated in the alloy after peak ageing treatment. The extruded alloy showed the yield strength, ultimate tensile strength and elongation to fracture of 157.6 ?MPa, 248.6 ?MPa and 17.5%, respectively. After peak ageing, the yield strength and ultimate tensile strength can be enhanced by as much as 15.7% and 8.6% reaching 182.3 ?MPa and 270 ?MPa, respectively. The improvement of the tensile strengths is mainly attributed to the enhanced precipitation strengthening by newly formed fine Mg5Ga2 precipitates. The ductility of the alloy was slightly increased by peak ageing at low temperatures (150 ?°C and 190 ?°C), but remarkably decreased by peak ageing at high temperature (230 ?°C) due to the formation of coarsened Mg5Ga2 particles which easily initiated the cracks during tensile deformation.  相似文献   

18.
Ti-Mo alloys with various Mo contents from 6wt% to 14wt% were processed by spark plasma sintering based on elemental powders. The influence of sintering temperature and Mo content on the microstructure and mechanical properties of the resulting alloys were investigated. For each Mo concentration, the optimum sintering temperature was determined, resulting in a fully dense and uniform microstructure of the alloy. The optimized sintering temperature gradually increases in the range of 1100–1300℃ with the increase in Mo content. The microstructure of the Ti-(6–12)Mo alloy consists of acicular α phase surrounded by equiaxed grains of β phase, while the Ti-14Mo alloy only contains single β phase. A small amount of fine α lath precipitated from β phase contributes to the improvement in strength and hardness of the alloys. Under the sintering condition at 1250℃, the Ti-12Mo alloy is found to possess superior mechanical properties with the Vickers hardness of Hv 472, the compressive yield strength of 2182 MPa, the compression rate of 32.7%, and the elastic modulus of 72.1 GPa. These results demonstrate that Ti-Mo alloys fabricated via spark plasma sintering are indeed a perspective candidate alloy for dental applications.  相似文献   

19.
在油页岩原位开采过程中,需要300℃以上高温持续对地层加热数月甚至数年,造成井筒密封完整性失效。目前国内外关于油页岩原位开采的研究集中于加热方式的实验介绍,没有可参考的实钻井筒结构设计。依据吉林松南青一段油页岩的实际情况,设计电加热、注热氮气加热两种不同开发方式下的井筒结构,利用有限元软件对加热体、套管、水泥环、围岩组合体密封完整性模型进行模拟分析。结果表明,采用600℃电加热方式进行开采时,热量传入地层迅速衰减,有效开发半径仅2. 0 m,难以适用于油页岩的开采;采用注热氮气加热开发时,有效开发半径仅5. 0 m,考虑后期压裂,热氮气可通过裂缝有效加热地层,适用于油页岩的开采;套管在加热段热应力可达1 094 MPa,需选用偏梯扣TP110H抗高温套管。  相似文献   

20.
Niobium-doped ZnO transparent conductive films are deposited on glass substrates by radio frequency sputtering at 300℃. The influence of O2/Ar ratio on the structural, electrical and optical properties of the as-deposited films is investigated by X-ray diffraction, Hall measurement and optical transmission spectroscopy. The lowest resistivity of 4.0×10^-4Ω· cm is obtained from the film deposited at the O2/Ar ratio of 1/12. The average optical transmittance of the films is over 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号