首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethylsulphoniopropionate (DMSP) accounts for up to 10% of carbon fixed by marine phytoplankton in ocean surface waters, producing an estimated 11.7-103?Tmol S per year, most of which is processed by marine bacteria through the demethylation/demethiolation pathway. This pathway releases methanethiol (MeSH) instead of the climatically active gas dimethylsulphide (DMS) and enables marine microorganisms to assimilate the reduced sulphur. Despite recognition of this critical microbial transformation for over two decades, the biochemical pathway and enzymes responsible have remained unidentified. Here we show that three new enzymes related to fatty acid β-oxidation constitute the pathway that assimilates methylmercaptopropionate (MMPA), the first product of DMSP demethylation/demethiolation, and that two previously unknown coenzyme A (CoA) derivatives, 3-methylmercaptopropionyl-CoA (MMPA-CoA) and methylthioacryloyl-CoA (MTA-CoA), are formed as novel intermediates. A member of the marine roseobacters, Ruegeria pomeroyi DSS-3, requires the MMPA-CoA pathway for MMPA assimilation and MeSH production. This pathway and the ability to produce MeSH from MMPA are present in diverse bacteria, and the ubiquitous SAR11 clade bacterium Pelagibacter ubique possesses enzymes for at least the first two steps. Analysis of marine metagenomic data indicates that the pathway is widespread among bacterioplankton in the ocean surface waters, making it one of the most important known routes for acquisition of reduced carbon and sulphur by surface ocean heterotrophs.  相似文献   

2.
Wortmann UG  Chernyavsky BM 《Nature》2007,446(7136):654-656
The global carbon and sulphur cycles are central to our understanding of the Earth's history, because changes in the partitioning between the reduced and oxidized reservoirs of these elements are the primary control on atmospheric oxygen concentrations. In modern marine sediments, the burial rates of reduced carbon and sulphur are positively coupled, but high-resolution isotope records indicate that these rates were inversely related during the Early Cretaceous period. This inverse relationship is difficult to reconcile with our understanding of the processes that control organic matter remineralization and pyrite burial. Here we show that the inverse correlation can be explained by the deposition of evaporites during the opening of the South Atlantic Ocean basin. Evaporite deposition can alter the chemical composition of sea water, which can in turn affect the ability of sulphate-reducing bacteria to remineralize organic matter and mediate pyrite burial. We use a reaction-transport model to quantify these effects, and the resulting changes in the burial rates of carbon and sulphur, during the Early Cretaceous period. Our results indicate that deposition of the South Atlantic evaporites removed enough sulphate from the ocean temporarily to reduce biologically mediated pyrite burial and organic matter remineralization by up to fifty per cent, thus explaining the inverse relationship between the burial rates of reduced carbon and sulphur during this interval. Furthermore, our findings suggest that the effect of changing seawater sulphate concentrations on the marine subsurface biosphere may be the key to understanding other large-scale perturbations of the global carbon and sulphur cycles.  相似文献   

3.
An antioxidant function for DMSP and DMS in marine algae   总被引:29,自引:0,他引:29  
Sunda W  Kieber DJ  Kiene RP  Huntsman S 《Nature》2002,418(6895):317-320
The algal osmolyte dimethylsulphoniopropionate (DMSP) and its enzymatic cleavage product dimethylsulphide (DMS) contribute significantly to the global sulphur cycle, yet their physiological functions are uncertain. Here we report results that, together with those in the literature, show that DMSP and its breakdown products (DMS, acrylate, dimethylsulphoxide, and methane sulphinic acid) readily scavenge hydroxyl radicals and other reactive oxygen species, and thus may serve as an antioxidant system, regulated in part by enzymatic cleavage of DMSP. In support of this hypothesis, we found that oxidative stressors, solar ultraviolet radiation, CO(2) limitation, Fe limitation, high Cu(2+) (ref. 9) and H(2)O(2) substantially increased cellular DMSP and/or its lysis to DMS in marine algal cultures. Our results indicate direct links between such stressors and the dynamics of DMSP and DMS in marine phytoplankton, which probably influence the production of DMS and its release to the atmosphere. As oxidation of DMS to sulphuric acid in the atmosphere provides a major source of sulphate aerosols and cloud condensation nuclei, oxidative stressors--including solar radiation and Fe limitation--may be involved in complex ocean atmosphere feedback loops that influence global climate and hydrological cycles.  相似文献   

4.
Czyzewski BK  Wang DN 《Nature》2012,483(7390):494-497
The hydrosulphide ion (HS(-)) and its undissociated form, hydrogen sulphide (H(2)S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H(2)S (ref. 4). The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD(+), which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H(2)S and HS(-) inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS(-) channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS(-) ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.  相似文献   

5.
Proteorhodopsins are light-dependent proton pumps that are predicted to have an important role in the ecology of the oceans by supplying energy for microbial metabolism. Proteorhodopsin genes were first discovered through the cloning and sequencing of large genomic DNA fragments from seawater. They were later shown to be widely distributed, phylogenetically diverse, and active in the oceans. Proteorhodopsin genes have not been found in cultured bacteria, and on the basis of environmental sequence data, it has not yet been possible to reconstruct the genomes of uncultured bacterial strains that have proteorhodopsin genes. Although the metabolic effect of proteorhodopsins is uncertain, they are thought to function in cells for which the primary mode of metabolism is the heterotrophic assimilation of dissolved organic carbon. Here we report that SAR11 strain HTCC1062 ('Pelagibacter ubique'), the first cultivated member of the extraordinarily abundant SAR11 clade, expresses a proteorhodopsin gene when cultured in autoclaved seawater and in its natural environment, the ocean. The Pelagibacter proteorhodopsin functions as a light-dependent proton pump. The gene is expressed by cells grown in either diurnal light or in darkness, and there is no difference between the growth rates or cell yields of cultures grown in light or darkness.  相似文献   

6.
Bao H  Campbell DA  Bockheim JG  Thiemens MH 《Nature》2000,407(6803):499-502
The dry valleys of Antarctica are some of the oldest terrestrial surfaces on the Earth. Despite much study of soil weathering and development, ecosystem dynamics and the occurrence of life in these extreme environments, the reasons behind the exceptionally high salt content of the dry-valley soils have remained uncertain. In particular, the origins of sulphate are still controversial; proposed sources include wind-blown sea salt, chemical weatherings, marine incursion, hydrothermal processes and oxidation of biogenic sulphur in the atmosphere. Here we report measurements of delta18O and delta17O values of sulphates from a range of dry-valley soils. These sulphates all have a large positive anomaly of 17O, of up to 3.4/1000. This suggests that Antarctic sulphate comes not just from sea salt (which has no anomaly of 17O) but also from the atmospheric oxidation of reduced gaseous sulphur compounds, the only known process that can generate the observed 17O anomaly. This source is more prominent in high inland soils, suggesting that the distributions of sulphate are largely explained by differences in particle size and transport mode which exist between sea-salt aerosols and aerosols formed from biogenic sulphur emission.  相似文献   

7.
Kah LC  Lyons TW  Frank TD 《Nature》2004,431(7010):834-838
Progressive oxygenation of the Earth's early biosphere is thought to have resulted in increased sulphide oxidation during continental weathering, leading to a corresponding increase in marine sulphate concentration. Accurate reconstruction of marine sulphate reservoir size is therefore important for interpreting the oxygenation history of early Earth environments. Few data, however, specifically constrain how sulphate concentrations may have changed during the Proterozoic era (2.5-0.54 Gyr ago). Prior to 2.2 Gyr ago, when oxygen began to accumulate in the Earth's atmosphere, sulphate concentrations are inferred to have been <1 mM and possibly <200 microM, on the basis of limited isotopic variability preserved in sedimentary sulphides and experimental data showing suppressed isotopic fractionation at extremely low sulphate concentrations. By 0.8 Gyr ago, oxygen and thus sulphate levels may have risen significantly. Here we report large stratigraphic variations in the sulphur isotope composition of marine carbonate-associated sulphate, and use a rate-dependent model for sulphur isotope change that allows us to track changes in marine sulphate concentrations throughout the Proterozoic. Our calculations indicate sulphate levels between 1.5 and 4.5 mM, or 5-15 per cent of modern values, for more than 1 Gyr after initial oxygenation of the Earth's biosphere. Persistence of low oceanic sulphate demonstrates the protracted nature of Earth's oxygenation. It links biospheric evolution to temporal patterns in the depositional behaviour of marine iron- and sulphur-bearing minerals, biological cycling of redox-sensitive elements and availability of trace metals essential to eukaryotic development.  相似文献   

8.
Bak F  Cypionka H 《Nature》1987,326(6116):891-892
Two processes are known whereby energy is conserved during substrate metabolism in heterotrophic organisms: respiration and fermentation. Both involve oxidation–reduction reactions; but whereas in respiration the electrons are transferred from substrate to an electron acceptor, in fermentation part of the substrate molecule itself accepts the electrons. Fermentation is therefore a type of disproportionation, and does not involve an overall change in oxidation state of the substrate. All fermentative substrates known to date are organic molecules. We have discovered a novel type of fermentation involving the disproportionation of inorganic sulphur compounds in certain sulphate-reducing bacteria1. Initially discovered in a newly isolated sulphate-reducing bacterium, Desulfovibrio sulfodismutans, the capacity for disproportionation of sulphur compounds is also found in some known sulphate-reducing bacteria and various bacteria isolated from freshwater, brackish or marine sediments.  相似文献   

9.
The seventeenth-century Swedish warship, Vasa, was recovered in good condition after 333 years in the cold brackish water of Stockholm harbour. After extensive treatment to stabilize and dry the ship's timbers, the ship has been on display in the Vasa Museum since 1990. However, high acidity and a rapid spread of sulphate salts were recently observed on many wooden surfaces, which threaten the continued preservation of the Vasa. Here we show that, in addition to concentrations of sulphate mostly on the surface of oak beams, elemental sulphur has accumulated within the beams (0.2-4 per cent by mass), and also sulphur compounds of intermediate oxidation states exist. The overall quantity of elemental sulphur could produce up to 5,000 kg of sulphuric acid when fully oxidized. We suggest that the oxidation of the reduced sulphur--which probably originated from the penetration of hydrogen sulphide into the timbers as they were exposed to the anoxic water--is being catalysed by iron species released from the completely corroded original iron bolts, as well as from those inserted after salvage. Treatments to arrest acid wood hydrolysis of the Vasa and other wooden marine-archaeological artefacts should therefore focus on the removal of sulphur and iron compounds.  相似文献   

10.
Shen Y  Buick R  Canfield DE 《Nature》2001,410(6824):77-81
Sulphate-reducing microbes affect the modern sulphur cycle, and may be quite ancient, though when they evolved is uncertain. These organisms produce sulphide while oxidizing organic matter or hydrogen with sulphate. At sulphate concentrations greater than 1 mM, the sulphides are isotopically fractionated (depleted in 34S) by 10-40/1000 compared to the sulphate, with fractionations decreasing to near 0/1000 at lower concentrations. The isotope record of sedimentary sulphides shows large fractionations relative to seawater sulphate by 2.7 Gyr ago, indicating microbial sulphate reduction. In older rocks, however, much smaller fractionations are of equivocal origin, possibly biogenic but also possibly volcanogenic. Here we report microscopic sulphides in approximately 3.47-Gyr-old barites from North Pole, Australia, with maximum fractionations of 21.1/1000, about a mean of 11.6/1000, clearly indicating microbial sulphate reduction. Our results extend the geological record of microbial sulphate reduction back more than 750 million years, and represent direct evidence of an early specific metabolic pathway--allowing time calibration of a deep node on the tree of life.  相似文献   

11.
The sulphur cycle responds to changes in seawater chemistry, biological evolution and tectonic activity. We follow an isotopic approach in order to constrain the state of the ocean/atmosphere system during late Neoproterozoic and early Cambrian. For this purpose, a sedimentary succession deposited on the Yangtze Platform, South China, was analysed for its sulphur isotopic composition in different S-bearing phases. Redox changes were defined by the degree of pyritization (DOP) values in order to show variations in the oxygenation of the depositional environment. The sulphur isotopic composition of late Neoproterozoic to early Cambrian seawater sulphate ranges from +30‰ to +35‰ as evident from trace sulphate in unaltered carbonates and phosphorites. The isotopic composition for pyrite and organic sulphur varies between -16‰ and +23‰. The apparent sulphur isotopic fractionation between seawater sulphate and pyrite as well as organically bound sulphur varies between 7‰ and 50‰. This large fractionation, as well as its variability suggests a biological origin for pyrite and organically bound sulphur. The temporal evolution of different geochemical proxy signals is comparable for different successions across the Yangtze Platform.  相似文献   

12.
Brocks JJ  Love GD  Summons RE  Knoll AH  Logan GA  Bowden SA 《Nature》2005,437(7060):866-870
The disappearance of iron formations from the geological record approximately 1.8 billion years (Gyr) ago was the consequence of rising oxygen levels in the atmosphere starting 2.45-2.32 Gyr ago. It marks the end of a 2.5-Gyr period dominated by anoxic and iron-rich deep oceans. However, despite rising oxygen levels and a concomitant increase in marine sulphate concentration, related to enhanced sulphide oxidation during continental weathering, the chemistry of the oceans in the following mid-Proterozoic interval (approximately 1.8-0.8 Gyr ago) probably did not yet resemble our oxygen-rich modern oceans. Recent data indicate that marine oxygen and sulphate concentrations may have remained well below current levels during this period, with one model indicating that anoxic and sulphidic marine basins were widespread, and perhaps even globally distributed. Here we present hydrocarbon biomarkers (molecular fossils) from a 1.64-Gyr-old basin in northern Australia, revealing the ecological structure of mid-Proterozoic marine communities. The biomarkers signify a marine basin with anoxic, sulphidic, sulphate-poor and permanently stratified deep waters, hostile to eukaryotic algae. Phototrophic purple sulphur bacteria (Chromatiaceae) were detected in the geological record based on the new carotenoid biomarker okenane, and they seem to have co-existed with communities of green sulphur bacteria (Chlorobiaceae). Collectively, the biomarkers support mounting evidence for a long-lasting Proterozoic world in which oxygen levels remained well below modern levels.  相似文献   

13.
通过对贵州省水城县五个乡镇猕猴桃果园土壤养分含量和酸碱度的分析测定,结果表明:猴场、米箩、鸡场等乡镇猕猴桃果园的氮素和钾素含量较为丰富,但土壤的有机质含量普遍偏低,而鸡场和野钟乡猕猴桃果园的土壤速效磷含量极少,不能满足猕猴桃的生长需求;五个乡镇猕猴桃果园土壤的pH值普遍高于猕猴桃的最适生长范围,可通过在土壤中加入硫磺粉和硫酸亚铁的方式降低土壤酸碱度。  相似文献   

14.
Early oxygenation of the terrestrial environment during the Mesoproterozoic   总被引:2,自引:0,他引:2  
Parnell J  Boyce AJ  Mark D  Bowden S  Spinks S 《Nature》2010,468(7321):290-293
Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (~2.3?billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8?Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S?相似文献   

15.
海洋二甲基硫的生物生产与降解   总被引:9,自引:0,他引:9  
二甲基硫是海洋排放到大气中的主要含硫化合物。海洋二甲基硫主要来源于浮游植物。论述了海洋中二甲基硫产生和降解的基本过程,包括同化硫酸盐还原、二甲基硫前体-二甲基磺基丙的生成,积累和释放,二四收藏 硫的产生及其在海水中的命运等。  相似文献   

16.
Preservation of organic matter in sediments promoted by iron   总被引:19,自引:0,他引:19  
Lalonde K  Mucci A  Ouellet A  Gélinas Y 《Nature》2012,483(7388):198-200
The biogeochemical cycles of iron and organic carbon are strongly interlinked. In oceanic waters, organic ligands have been shown to control the concentration of dissolved iron. In soils, solid iron phases shelter and preserve organic carbon, but the role of iron in the preservation of organic matter in sediments has not been clearly established. Here we use an iron reduction method previously applied to soils to determine the amount of organic carbon associated with reactive iron phases in sediments of various mineralogies collected from a wide range of depositional environments. Our findings suggest that 21.5?±?8.6 per cent of the organic carbon in sediments is directly bound to reactive iron phases. We further estimate that a global mass of (19-45)?×?10(15)?grams of organic carbon is preserved in surface marine sediments as a result of its association with iron. We propose that these associations between organic carbon and iron, which are formed primarily through co-precipitation and/or direct chelation, promote the preservation of organic carbon in sediments. Because reactive iron phases are metastable over geological timescales, we suggest that they serve as an efficient 'rusty sink' for organic carbon, acting as a key factor in the long-term storage of organic carbon and thus contributing to the global cycles of carbon, oxygen and sulphur.  相似文献   

17.
Analyses of the original and pyrolytic products of coccolithophore at various temperatures suggest that the contribution of coccolithophore to the formation of large immature oil reservoirs should attract keen interest. Through biochemical processes algae can change inorganic sulphur into organic sulphur, which could be one of the most important precursors of organic sulphur compounds in oil and source rocks. When Methylphenanthrene Index (MPI) and Methylphenanthrene Ratio (MPR) indices were used to evaluate the evolution degree of source rocks and oil maturity, other maturity indices must be used together for correction. In low maturity, the relative abundances of dibenzothiophene (DBT), fluorine (F) and dibenzofuran (DBF) can be used to identify the oxidation-reduction environments.  相似文献   

18.
采用新型的脱硫试剂 (Ni2 B)对富硫原油沥青质中含硫结构单元的研究结果表明 ,沥青质脱硫产物以饱和烃为主 ,包括丰富的正构烷烃系列和环状生标系列。沥青质脱硫产物类似于原油饱和烃的分布。通过计算得到了沥青质脱硫饱和烃及其环状生标的参数 ,这些参数与原油饱和烃的相应参数比较接近 ,这表明沥青质中的含硫结构单元可能是原油饱和烃的先质。  相似文献   

19.
为脱硫、降硫提供科学理论依据,本文选择了内蒙古乌达矿务局9号煤层和10号煤层为研究对象,系统地研究了煤中硫的形成及其分布的控制因素。结果表明:煤中硫含量的变化主要受控于泥炭聚积期沉积环境的变化,乌达矿区9号煤层和10号煤层是在海侵的背景下形成的,在泥炭聚积期,由于不同水系的发育,控制了煤层间距的变化,更重要的是控制了煤中硫含量的分布,在海水影响下聚积的泥炭比在淡水环境聚积的泥炭含更多的硫。中硫煤和高硫煤中硫的来源主要是侵入泥炭沼泽的海水中的硫酸盐。另外,据研究结果,提出了乌达矿区煤中黄铁矿和有机硫化合物的形成模式。  相似文献   

20.
研究了2,3-二氯-1,4-苯醌和二硫代草酰胺的反应,合成了三个具有平面型结构的含硫萘醌杂环化合物,该类杂环化物可以作为分子内电荷转移复合物的给体或是其它有机电导和有机光导材料的合成原料,所合成的化合物,经过熔点测定,元素分析和红外光谱分析确证了它们的结构。此外,本文还探讨了该类化合物的合成机理和影响合成反应的条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号