首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRF2 is a telomere-binding protein that has a role in telomere protection. We generated mice that overexpress TRF2 in the skin. These mice had a severe phenotype in the skin in response to light, consisting of premature skin deterioration, hyperpigmentation and increased skin cancer, which resembles the human syndrome xeroderma pigmentosum. Keratinocytes from these mice were hypersensitive to ultraviolet irradiation and DNA crosslinking agents. The skin cells of these mice had marked telomere shortening, loss of the telomeric G-strand overhang and increased chromosomal instability. Telomere loss in these mice was mediated by XPF, a structure-specific nuclease involved in ultraviolet-induced damage repair and mutated in individuals with xeroderma pigmentosum. These findings suggest that TRF2 provides a crucial link between telomere function and ultraviolet-induced damage repair, whose alteration underlies genomic instability, cancer and aging. Finally, we show that a number of human skin tumors have increased expression of TRF2, further highlighting a role for TRF2 in skin cancer.  相似文献   

2.
Telomere dysfunction and evolution of intestinal carcinoma in mice and humans   总被引:28,自引:0,他引:28  
Telomerase activation is a common feature of advanced human cancers and facilitates the malignant transformation of cultured human cells and in mice. These experimental observations are in accord with the presence of robust telomerase activity in more advanced stages of human colorectal carcinogenesis. However, the occurrence of colon carcinomas in telomerase RNA (Terc)-null, p53-mutant mice has revealed complex interactions between telomere dynamics, checkpoint responses and carcinogenesis. We therefore sought to determine whether telomere dysfunction exerts differential effects on cancer initiation versus progression of mouse and human intestinal neoplasia. In successive generations of ApcMin Terc-/- mice, progressive telomere dysfunction led to an increase in initiated lesions (microscopic adenomas), yet a significant decline in the multiplicity and size of macroscopic adenomas. That telomere dysfunction also contributes to human colorectal carcinogenesis is supported by the appearance of anaphase bridges (a correlate of telomere dysfunction) at the adenoma-early carcinoma transition, a transition recognized for marked chromosomal instability. Together, these data are consistent with a model in which telomere dysfunction promotes the chromosomal instability that drives early carcinogenesis, while telomerase activation restores genomic stability to a level permissive for tumor progression. We propose that early and transient telomere dysfunction is a major mechanism underlying chromosomal instability of human cancer.  相似文献   

3.
Inhibition of telomerase is proposed to limit the growth of cancer cells by triggering telomere shortening and cell death. Telomere maintenance by telomerase is sufficient, in some cell types, to allow immortal growth. Telomerase has been shown to cooperate with oncogenes in transforming cultured primary human cells into neoplastic cells, suggesting that telomerase activation contributes to malignant transformation. Moreover, telomerase inhibition in human tumour cell lines using dominant-negative versions of TERT leads to telomere shortening and cell death. These findings have led to the proposition that telomerase inhibition may result in cessation of tumour growth. The absence of telomerase from most normal cells supports the potential efficacy of anti-telomerase drugs for tumour therapy, as its inhibition is unlikely to have toxic effects. Mice deficient for Terc RNA (encoding telomerase) lack telomerase activity, and constitute a model for evaluating the role of telomerase and telomeres in tumourigenesis. Late-generation Terc-/- mice show defects in proliferative tissues and a moderate increase in the incidence of spontaneous tumours in highly proliferative cell types (lymphomas, teratocarcinomas). The appearance of these tumours is thought to be a consequence of chromosomal instability in these mice. These observations have challenged the expected effectiveness of anti-telomerase-based cancer therapies. Different cell types may nonetheless vary in their sensitivity to the chromosomal instability produced by telomere loss or to the activation of telomere-rescue mechanisms. Here we show that late-generation Terc-/- mice, which have short telomeres and are telomerase-deficient, are resistant to tumour development in multi-stage skin carcinogenesis. Our results predict that an anti-telomerase-based tumour therapy may be effective in epithelial tumours.  相似文献   

4.
Telomeres are specialized nucleoprotein complexes that serve as protective caps of linear eukaryotic chromosomes. Loss of telomere function is associated with rampant genetic instability and loss of cellular viability and renewal potential. The telomere also participates in processes of chromosomal repair, as evidenced by the 'capture' or de novo synthesis of telomere repeats at double-stranded breaks and by the capacity of yeast telomeres to serve as repositories of essential components of the DNA repair machinery, particularly those involved in non-homologous end-joining (NHEJ). Here we used the telomerase-deficient mouse, null for the essential telomerase RNA gene (Terc), to assess the role of telomerase and telomere function on the cellular and organismal response to ionizing radiation. Although the loss of telomerase activity per se had no discernable impact on the response to ionizing radiation, the emergence of telomere dysfunction in late-generation Terc-/- mice imparted a radiosensitivity syndrome associated with accelerated mortality. On the cellular level, the gastrointestinal crypt stem cells and primary thymocytes showed increased rates of apoptosis, and mouse embryonic fibroblasts (MEFs) showed diminished dose-dependent clonogenic survival. The radiosensitivity of telomere dysfunctional cells correlated with delayed DNA break repair kinetics, persistent chromosomal breaks and cytogenetic profiles characterized by complex chromosomal aberrations and massive fragmentation. Our findings establish a intimate relationship between functionally intact telomeres and the genomic, cellular and organismal response to ionizing radiation.  相似文献   

5.
Erosion of the telomeric single-strand overhang at replicative senescence   总被引:28,自引:0,他引:28  
Cultured primary human cells inevitably enter a state of replicative senescence for which the specific molecular trigger is unknown. We show that the single-strand telomeric overhang, a key component of telomere structure, is eroded at senescence. Expression of telomerase prevents overhang loss, suggesting that this enzyme prevents senescence by maintaining proper telomere structure. In contrast, progressive overhang loss occurs in cells that avoid senescence through the inactivation of p53 and Rb, indicating that overhang erosion is the result of continuous cell division and not a consequence of senescence. We thus provide evidence for a specific molecular alteration in telomere structure at senescence and suggest that this change, rather than overall telomere length, serves to trigger this state.  相似文献   

6.
Telomere shortening limits the proliferative lifespan of human cells by activation of DNA damage pathways, including upregulation of the cell cycle inhibitor p21 (encoded by Cdkn1a, also known as Cip1 and Waf1)) (refs. 1-5). Telomere shortening in response to mutation of the gene encoding telomerase is associated with impaired organ maintenance and shortened lifespan in humans and in mice. The in vivo function of p21 in the context of telomere dysfunction is unknown. Here we show that deletion of p21 prolongs the lifespan of telomerase-deficient mice with dysfunctional telomeres. p21 deletion improved hematolymphopoiesis and the maintenance of intestinal epithelia without rescuing telomere function. Moreover, deletion of p21 rescued proliferation of intestinal progenitor cells and improved the repopulation capacity and self-renewal of hematopoietic stem cells from mice with dysfunctional telomeres. In these mice, apoptotic responses remained intact, and p21 deletion did not accelerate chromosomal instability or cancer formation. This study provides experimental evidence that telomere dysfunction induces p21-dependent checkpoints in vivo that can limit longevity at the organismal level.  相似文献   

7.
Telomeres in most immortal cells are maintained by the enzyme telomerase, allowing cells to divide indefinitely. Some telomerase-negative tumors and immortal cell lines maintain long heterogeneous telomeres by the ALT (alternative lengthening of telomeres) mechanism; such tumors are expected to be resistant to anti-telomerase drug therapies. Occasionally telomerase-negative Saccharomyces cerevisiae mutants survive, and 10% of them (type II survivors) have unstable telomeres. As in human ALT+ cells, short telomeres in yeast type II survivors lengthen abruptly; in yeast, this is dependent on the recombination proteins Rad52p and Rad50p. In human cells, ALT involves copying of sequence from a donor to a recipient telomere. We have characterized for the first time a class of complex telomere mutations seen only in ALT+ cells. The mutant telomeres are defined by the replacement of the progenitor telomere at a discrete point (fusion point) with a different telomere repeat array. Among 19 characterized fusion points, one occurred within the first six repeats of the telomere, indicating that these recombination-like events can occur anywhere within the telomere. One mutant telomere may have been involved in a secondary recombination-like mutation event, suggesting that these mutations are sporadic but ongoing in ALT+ cells. We also identified simple intra-allelic mutations at high frequency, which evidently contribute to telomere instability in ALT+ cells.  相似文献   

8.
In most eukaryotes, poly(ADP-ribose) polymerase (PARP) recognizes DNA strand interruptions generated in vivo. DNA binding by PARP triggers primarily its own modification by the sequential addition of ADP-ribose units to form polymers; this modification, in turn, causes the release of PARP from DNA ends. Studies on the effects of the disruption of the gene encoding PARP (Adprt1, formerly Adprp) in mice have demonstrated roles for PARP in recovery from DNA damage and in suppressing recombination processes involving DNA ends. Telomeres are the natural termini of chromosomes and are, therefore, potential targets of PARP. Here, by the use of two different techniques, we show that mice lacking PARP display telomere shortening compared with wild-type mice. Telomere shortening is seen in different genetic backgrounds and in different tissues, both from embryos and adult mice. In vitro telomerase activity, however, is not altered in Adprt1-/- mouse fibroblasts. Furthermore, cytogenetic analysis of mouse embryonic fibroblasts reveals that lack of PARP is associated with severe chromosomal instability, characterized by increased frequencies of chromosome fusions and aneuploidy. The absence of PARP does not affect the presence of single-strand overhangs, naturally present at the ends of telomeres. This study therefore reveals an unanticipated role for PARP in telomere length regulation and provides insights into its functions in maintaining genomic integrity.  相似文献   

9.
Ulcerative colitis, a chronic inflammatory disease of the colon, is associated with a high risk of colorectal carcinoma that is thought to develop through genomic instability. We considered that the rapid cell turnover and oxidative injury observed in ulcerative colitis might accelerate telomere shortening, thereby increasing the potential of chromosomal ends to fuse, resulting in cycles of chromatin bridge breakage and fusion and chromosomal instability associated with tumor cell progression. Here we have used quantitative fluorescence in situ hybridization to compare chromosomal aberrations and telomere shortening in non-dysplastic mucosa taken from individuals affected by ulcerative colitis, either with (UC progressors) or without (UC non-progressors) dysplasia or cancer. Losses, but not gains, of chromosomal arms and centromeres are highly correlated with telomere shortening. Chromosomal losses are greater and telomeres are shorter in biopsy samples from UC progressors than in those from UC non-progressors or control individuals without ulcerative colitis. A mechanistic link between telomere shortening and chromosomal instability is supported by a higher frequency of anaphase bridges--an intermediate in the breakage and fusion of chromatin bridges--in UC progressors than in UC non-progressors or control individuals. Our study shows that telomere length is correlated with chromosomal instability in a precursor of human cancer.  相似文献   

10.
A role for the Rb family of proteins in controlling telomere length   总被引:6,自引:0,他引:6  
The molecular mechanisms of cellular mortality have recently begun to be unraveled. In particular, it has been discovered that cells that lack telomerase are subject to telomere attrition with each round of replication, eventually leading to loss of telomere capping function at chromosome ends. Critically short telomeres and telomeres lacking telomere-binding proteins lose their functionality and are metabolized as DNA breaks, thus generating chromosomal fusions. Telomerase activity is sufficient to rescue short telomeres and confers an unlimited proliferative capacity. In addition, the tumor-suppressor pathway Cdkn2a/Rb1 has also been implicated as a barrier to immortalization. Here, we report a connection between the members of the retinoblastoma family of proteins, Rb1 (retinoblastoma 1), Rbl1 (retinoblastoma-like 1) and Rbl2 (retinoblastoma-like 2), and the mechanisms that regulate telomere length. In particular, mouse embryonic fibroblasts doubly deficient in Rbl1 and Rbl2 or triply deficient in Rbl1, Rbl2 and Rb1 have markedly elongated telomeres compared with those of wildtype or Rb1-deficient cells. This deregulation of telomere length is not associated with increased telomerase activity. Notably, the abnormally elongated telomeres in doubly or triply deficient cells retain their end-capping function, as shown by the normal frequency of chromosomal fusions. These findings demonstrate a connection between the Rb1 family and the control of telomere length in mammalian cells.  相似文献   

11.
Extensive allelic variation and ultrashort telomeres in senescent human cells   总被引:22,自引:0,他引:22  
By imposing a limit on the proliferative lifespan of most somatic cells, telomere erosion represents an innate mechanism for tumor suppression and may contribute to age-related disease. A detailed understanding of the pathways that link shortened telomeres to replicative senescence has been severely hindered by the inability of current methods to analyze telomere dynamics in detail. Here we describe single telomere length analysis (STELA), a PCR-based approach that accurately measures the full spectrum of telomere lengths from individual chromosomes. STELA analysis of human XpYp telomeres in fibroblasts identifies several features of telomere biology. We observe bimodal distributions of telomeres in normal fibroblasts; these distributions result from inter-allelic differences of up to 6.5 kb, indicating that unexpectedly large-scale differences in zygotic telomere length are maintained throughout development. Most telomeres shorten in a gradual fashion consistent with simple losses through end replication, and the rates of erosion are independent of allele size. Superimposed on this are occasional, more substantial changes in length, which may be the consequence of additional mutational mechanisms. Notably, some alleles show almost complete loss of TTAGGG repeats at senescence.  相似文献   

12.
Cancer predisposition caused by elevated mitotic recombination in Bloom mice   总被引:19,自引:0,他引:19  
Bloom syndrome is a disorder associated with genomic instability that causes affected people to be prone to cancer. Bloom cell lines show increased sister chromatid exchange, yet are proficient in the repair of various DNA lesions. The underlying cause of this disease are mutations in a gene encoding a RECQ DNA helicase. Using embryonic stem cell technology, we have generated viable Bloom mice that are prone to a wide variety of cancers. Cell lines from these mice show elevations in the rates of mitotic recombination. We demonstrate that the increased rate of loss of heterozygosity (LOH) resulting from mitotic recombination in vivo constitutes the underlying mechanism causing tumour susceptibility in these mice.  相似文献   

13.
Joeng KS  Song EJ  Lee KJ  Lee J 《Nature genetics》2004,36(6):607-611
Telomere length is a crucial factor in senescence, but it has not been determined whether animals with long telomeres live longer than those with normal-length telomeres in the isogenic background of a given species. Here we show the effect of long telomeres on lifespan in the nematode Caenorhabditis elegans. We examined the effect of telomere length on lifespan by overexpressing HRP-1, a telomere-binding protein, which gradually increased telomere length in worms. Worms with longer telomeres lived longer. We confirmed that the extension of lifespan was due to the increased telomere length, and not to the overexpression of HRP-1 per se, by examining the lifespans of nontransgenic progeny of the transgenic worms, who retained the longer telomeres. The lifespan-extending effect of long telomeres was dependent on daf-16. The number of germ stem cells was not affected in worms with long telomeres, indicating that the telomere effect on lifespan is independent of germ stem cell cycling. Worms with long telomeres were more resistant to heat stress. Taken together, our results suggest that signaling may be initiated in postmitotic somatic cells by telomere length to regulate organismal lifespan.  相似文献   

14.
The Escherichia coli gene recQ was identified as a RecF recombination pathway gene. The gene SGS1, encoding the only RecQ-like DNA helicase in Saccharomyces cerevisiae, was identified by mutations that suppress the top3 slow-growth phenotype. Relatively little is known about the function of Sgs1p because single mutations in SGS1 do not generally cause strong phenotypes. Mutations in genes encoding RecQ-like DNA helicases such as the Bloom and Werner syndrome genes, BLM and WRN, have been suggested to cause increased genome instability. But the exact DNA metabolic defect that might underlie such genome instability has remained unclear. To better understand the cellular role of the RecQ-like DNA helicases, sgs1 mutations were analyzed for their effect on genome rearrangements. Mutations in SGS1 increased the rate of accumulating gross chromosomal rearrangements (GCRs), including translocations and deletions containing extended regions of imperfect homology at their breakpoints. sgs1 mutations also increased the rate of recombination between DNA sequences that had 91% sequence homology. Epistasis analysis showed that Sgs1p is redundant with DNA mismatch repair (MMR) for suppressing GCRs and for suppressing recombination between divergent DNA sequences. This suggests that defects in the suppression of rearrangements involving divergent, repeated sequences may underlie the genome instability seen in BLM and WRN patients and in cancer cases associated with defects in these genes.  相似文献   

15.
The benign-to-malignant transition in human breast cancer is associated with a marked increase in chromosomal aberrations. A new study suggests that telomere dysfunction and its associated bridge-fusion-breakage cycles may drive this episodic instability, thereby providing aspiring cancer cells with the multiple genetic aberrations needed to achieve a fully malignant state.  相似文献   

16.
Telomere maintenance by recombination in human cells   总被引:23,自引:0,他引:23  
  相似文献   

17.
Ye JZ  de Lange T 《Nature genetics》2004,36(6):618-623
Telomere length in humans is partly controlled by a feedback mechanism in which telomere elongation by telomerase is limited by the accumulation of the TRF1 complex at chromosome ends. TRF1 itself can be inhibited by the poly(ADP-ribose) polymerase (PARP) activity of its interacting partner tankyrase 1, which abolishes its DNA binding activity in vitro and removes the TRF1 complex from telomeres in vivo. Here we report that the inhibition of TRF1 by tankyrase is in turn controlled by a second TRF1-interacting factor, TIN2 (ref. 6). Partial knockdown of TIN2 by small hairpin RNA in a telomerase-positive cell line resulted in telomere elongation, which is typical of reduced TRF1 function. Transient inhibition of TIN2 with small interfering RNA led to diminished telomeric TRF1 signals. This effect could be reversed with the PARP inhibitor 3-aminobenzamide and did not occur in cells overexpressing a PARP-dead mutant of tankyrase 1. TIN2 formed a ternary complex with TRF1 and tankyrase 1 and stabilized their interaction, an effect also observed with the PARP-dead mutant of tankyrase 1. In vitro, TIN2 protected TRF1 from poly(ADP-ribosyl)ation by tankyrase 1 without affecting tankyrase 1 automodification. These data identify TIN2 as a PARP modulator in the TRF1 complex and can explain how TIN2 contributes to the regulation of telomere length.  相似文献   

18.
Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome.   总被引:14,自引:0,他引:14  
Rothmund-Thomson syndrome (RTS; also known as poikiloderma congenitale) is a rare, autosomal recessive genetic disorder characterized by abnormalities in skin and skeleton, juvenile cataracts, premature ageing and a predisposition to neoplasia. Cytogenetic studies indicate that cells from affected patients show genomic instability often associated with chromosomal rearrangements causing an acquired somatic mosaicism. The gene(s) responsible for RTS remains unknown. The genes responsible for Werner and Bloom syndromes (WRN and BLM, respectively) have been identified as homologues of Escherichia coli RecQ, which encodes a DNA helicase that unwinds double-stranded DNA into single-stranded DNAs. Other eukaryotic homologues thus far identified are human RECQL, Saccharomyces cerevisiae SGS1 and Schizosaccharomyces pombe rqh1. We recently cloned two new human helicase genes, RECQL4 at 8q24.3 and RECQL5 at 17q25, which encode members of the RecQ helicase family. Here, we report that three RTS patients carried two types of compound heterozygous mutations in RECQL4. The fact that the mutated alleles were inherited from the parents in one affected family and were not found in ethnically matched controls suggests that mutation of RECQL4 at human chromosome 8q24.3 is responsible for at least some cases of RTS.  相似文献   

19.
Transition through telomere crisis is thought to be a crucial event in the development of most breast carcinomas. Our goal in this study was to determine where this occurs in the context of histologically defined breast cancer progression. To this end, we assessed genome instability (using fluorescence in situ hybridization) and other features associated with telomere crisis in normal ductal epithelium, usual ductal hyperplasia, ductal carcinoma in situ and invasive cancer. We modeled this process in vitro by measuring these same features in human mammary epithelial cell cultures during ZNF217-mediated transition through telomere crisis and immortalization. Taken together, the data suggest that transition through telomere crisis and immortalization in breast cancer occurs during progression from usual ductal hyperplasia to ductal carcinoma in situ.  相似文献   

20.
Faithful segregation of replicated chromosomes is essential for maintenance of genetic stability and seems to be monitored by several mitotic checkpoints. Various components of these checkpoints have been identified in mammals, but their physiological relevance is largely unknown. Here we show that mutant mice with low levels of the spindle assembly checkpoint protein BubR1 develop progressive aneuploidy along with a variety of progeroid features, including short lifespan, cachectic dwarfism, lordokyphosis, cataracts, loss of subcutaneous fat and impaired wound healing. Graded reduction of BubR1 expression in mouse embryonic fibroblasts causes increased aneuploidy and senescence. Male and female mutant mice have defects in meiotic chromosome segregation and are infertile. Natural aging of wild-type mice is marked by decreased expression of BubR1 in multiple tissues, including testis and ovary. These results suggest a role for BubR1 in regulating aging and infertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号