首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
卷取温度是影响带钢组织性能的重要工艺参数.在生产实践中,如何提高厚规格带钢卷取温度的控制精度是一个难点.针对厚规格带钢在层流冷却过程中的工况特点,提出了温度场计算模型和对流换热系数模型的改进方法,并开发了一种全新的基于相似策略的自适应模型,以改善卷取温度前馈控制效果.经现场应用证明,本文提出的方案能有效提高厚规格带钢的卷取温度控制精度,其中厚度大于12 mm的带钢平均命中率可达到94.9%.  相似文献   

2.
轧后冷却过程中,卷取温度对带钢最终的微观组织和力学性能有重要影响。针对带钢轧后的层流冷却过程,分别采用有限差分法和有限元法,建立了带钢厚度方向的温度场模型,并将模型计算值与实测值进行对比。结果表明,两种方法建立的模型均能较准确地反映层流冷却过程中带钢的瞬态温度分布,为进一步分析带钢的微观组织转变和力学性能提供了依据。  相似文献   

3.
目前密集冷却工艺已广泛用于生产高强度带钢,但是该技术冷却速率较快的特点易造成带钢冷却不均匀等问题,导致带钢残余应力过大,进而产生边浪等板形缺陷。本文利用有限元方法,使用ABAQUS有限元软件建立某700 MPa级高强度带钢在密集冷却工艺下的模型,实现温度-相变-应力耦合计算,并进行多个实验验证了模型的准确性。通过修改有限元模型边界条件和初始条件,研究边部遮挡和初始温差对带钢层流冷却阶段产生的残余应力分布的影响规律。对于减小带钢层流冷却过程中产生的残余应力,减小带钢进入层流冷却前的初始温差更加有效。本研究成果经过现场试验验证,可靠性较高,可用于指导该种类型高强带钢生产,以减少带钢的残余应力,提高带钢板形质量。  相似文献   

4.
在热轧带钢生产过程中,卷取温度是影响成品带钢性能的重要参数之一,其精度的高低对带钢质量至关重要.为保证产品具有良好的性能,采用层流冷却装置对热轧后的板带进行冷却控制,喷水系统的设定是层流冷却过程控制的关键.在冷却过程中带钢的温度不能在线连续检测,其过程具有强非线性和时变性,而且在冷却过程中存在相变,因此难以建立精确的数学模型去描述这一冷却过程.随着带钢厚度,精轧出口温度和轧制速度的变化,单独的前馈/反馈控制很难满足高精度的温度控制需要.在本文的研究中,一系列层流冷却控制策略被采用,包括前馈/反馈控制,自适应算法,以及控制带钢整体温度的均匀性策略.实践应用表明这些控制策略得到很好的检验,能有效地提高卷取温度的控制精度和均匀性.  相似文献   

5.
为分析不同层流冷却工艺对热轧高强带钢残余应力的影响规律,以ABAQUS有限元软件为基础,采用FORTRAN语言编写用户子程序,建立热轧高强带钢快速冷却过程的有限元模型,对带钢层流冷却过程中温度场、组织及应力场的演变规律进行耦合计算。针对现场工艺,设计并实施过冷奥氏体连续冷却转变(CCT)试验和残余应力测试等试验对模型进行校正。以校正后的模型作为基础模型,修改基础模型的初始条件和边界条件,建立与边部遮挡、稀疏冷却、后段冷却、降低初始温差等4种层流冷却工艺对应的有限元模型,以定量分析4种工艺对减小带钢残余应力的效果。研究结果表明:原来无应力的带钢,经过层流冷却后,带钢宽度方向的应力分布变为边部有较大的压应力,中部有较小的拉应力。4种工艺都能有效减小残余应力,降幅从高到低依次为降低带钢横向初始温差、稀疏冷却、边部遮挡、后段冷却。  相似文献   

6.
热轧带钢层流冷却过程的卷取温度精度直接影响带钢的组织性能和力学性能,是保证板带质量和板形良好的关键因素。所以对热轧带钢卷取温度的控制,成为热轧生产中的重要环节,对其过程进行分析和研究具有深远的现实意义。以国内某热轧厂经过改造后的板带层流冷却系统为背景,对如何提高层流冷却过程的卷却温度精度及钢板内外温度均匀性从控制方法上入手进行了较深入系统的研究。  相似文献   

7.
热轧带钢层流冷却过程的卷取温度精度直接影响带钢的组织性能和力学性能,是保证板带质量和板形良好的关键因素。所以对热轧带钢卷取温度的控制,成为热轧生产中的重要环节,对其过程进行分析和研究具有深远的现实意义。以国内某热轧厂经过改造后的板带层流冷却系统为背景,对如何提高层流冷却过程的卷却温度精度及钢板内外温度均匀性从控制方法上入手进行了较深入系统的研究。  相似文献   

8.
现有热轧带钢层流冷却过程缺少对卷取温度的直接反馈机制,难以将卷取温度控制在一定范围内.将机理模型与案例推理智能技术相结合,提出了由冷却区喷水集管开启阀门总数预设定模型、卷取温度预报模型、前馈补偿模型与反馈补偿模型四个模块组成的混合智能控制方法,并利用某钢厂的实际运行数据进行实验研究.实验结果表明即使在工况条件频繁变化时,提出的层流冷却混合智能控制方法也能够及时、自动调整喷水集管阀门开启总数的设定值,最终将实际卷取温度控制在工艺要求的范围内,从而提高热轧带钢的组织性能.  相似文献   

9.
目前酒钢不锈钢厂热轧工序层流冷却系统对板带温度控制的精确度不够,导致带钢性能不符合要求。为了提高目标卷取温度的精度,获得组织性能和机械性能优良的带钢,对酒钢不锈钢热轧厂设备进行改造,通过分析层流冷却控制系统的变量和几种控制模型,并结合本厂实际情况建立了控制系统的数学模型。  相似文献   

10.
卷取温度对热轧X70管线钢层流冷却过程残余应力的影响   总被引:1,自引:0,他引:1  
通过热膨胀仪和Gleeble3500热模拟试验机检测X70钢的膨胀系数、高温屈服强度和弹性模量,采用Marc有限元软件计算了热轧带钢在层流冷却中卷取温度分别为500、550和600℃时的温度场、相变体积分数、残余应力随时间的变化.结果表明:层流冷却过程中,在水冷前期带钢边部的应力超过了该温度下钢板的屈服强度,带钢板形会向着边浪发展;水冷结束时,边部应力值再次超过屈服强度并发生了塑性变形,带钢板形会向着中浪发展.在保证X70管线钢性能的条件下,降低卷取温度有利于钢板贝氏体相变的完成和层流冷却阶段残余应力的降低.  相似文献   

11.
热轧带钢层流冷却过程中温度与相变耦合预测模型   总被引:4,自引:0,他引:4  
建立了温度与相变耦合有限元模型,对带钢轧后冷却过程中带钢厚度和宽度方向的温度场进行了模拟计算.建模过程中,考虑带钢的各金相组织的密度、导热系数、比热容等物性参数为温度的函数,取各相的线性平均值用于计算.根据连续等温转变实验曲线,采用Avrami方程和Scheil可加性法则计算带钢相变潜热,实现温度和相变耦合求解.计算结果表明,带钢经过层流冷却后,沿厚度方向存在着一定的温差,带钢温度沿宽度方向分布不均匀,和现场实测结果吻合.  相似文献   

12.
热连轧控冷过程卷取温度精度的优化   总被引:3,自引:0,他引:3  
控制冷却是热带钢轧后工艺处理中的关键技术,而卷取温度的精度又是冷却过程控制的核心·结合某热连轧厂控冷层流系统的改造,通过分析原有系统运行时对于厚带钢冷却能力不足、设定精度及纵向温度控制均匀性较差、冷却速率的控制策略单一、更换钢种组别时头几块钢的设定精度较差等方面的原因,在改造过程中有针对性地对冷却装置、冷却控制策略、数学模型进行改进,同时加强了控冷过程机模型自适应的能力,并开发了解析工具用于优化模型参数,提高了卷取温度过程控制的精度·  相似文献   

13.
研究分析带钢在层流冷却过程中的传热,采用厚度方向的有限元差分温度模型,替换原温度设定系统中计算误差较大的指数模型.同时,采用可加性法则建立空冷区和水冷区相变率和潜热计算模型,构建了以相变潜热为内热源的层流冷却厚度分布温度模型.在高精度的新温度设定系统基础上,将神经元网络引入现场自适应系统,根据现场数据采集系统的实测数据对模型中的换热系数进行在线参数调整.结果表明,改造后的层冷温度设定系统比原系统精度高,在变钢种变规格轧制时误差波动小.  相似文献   

14.
为了提高热轧带钢头部终轧温度命中率,以及确定合理的机架间喷水冷却制度,结合带钢热轧过程温度数学模型,开发了精轧区温度模拟计算软件·对多种不同规格产品进行了离线模拟计算,模拟计算结果与实测结果吻合较好,表明模型具有较高的精度·在温度模拟计算的基础上,给出了终轧温度设定策略·对两种截然不同的机架间喷水冷却阀门开启逻辑做了计算分析,结果表明,逆向开启机架间喷水冷却阀门,顺向关闭阀门,能以较少的喷嘴开启数达到终轧温度目标范围,并且可以节约能耗·  相似文献   

15.
对热轧板带钢超快速冷却设备作了简要介绍.通过带钢轧制过程参数耦合控制及冷却水精度设定,使冷却水流量快速调节实现目标值±0.5m3/h的偏差.根据热轧生产工艺制度要求,对超快速冷却过程建立温度计算数学模型.通过控制系统功能间的最优化设计,采取合理的冷却策略,使中间温度及卷取温度控制精度达到目标值±15℃范围之内,使热轧板带钢超快速冷却工艺逐步稳定合理.系统投入使用后,具有高稳定性、高可靠性、高温度命中率,显著提高了带钢产品的质量和性能.  相似文献   

16.
热连轧层流冷却系统速度前馈补偿的优化   总被引:1,自引:0,他引:1  
结合现场情况介绍了热轧带钢层流冷却设备和控制系统的数学模型,其中数学模型主要包括空冷模型、水冷模型、反馈控制模型和自学习模型.由于某热轧厂采用非匀速轧制工艺制度,带钢在冷却区内既有较大升速又有较大降速,原层流冷却系统不能够适应轧制速度的变化而影响卷取温度控制精度,故需针对轧制速度的变化进行速度前馈补偿控制;从过程自动化...  相似文献   

17.
针对卷取温度为500℃的12 mm厚X70管线钢热轧带钢,利用MARC有限元软件建立层流冷却过程中的热-力-相变耦合的数学模型,计算两种下上冷却水比时层流冷却过程中温度场、应力、应变、相变体积分数和翘曲度随时间的变化.结果表明:1.25水比的冷却过程中,厚度方向上各面的冷却速度不一致,导致水冷前期带钢上下表面应变不同,带钢会产生向上的翘曲,冷却过程中边部最大的翘曲量达到21.84mm;水冷后期带钢板形会逐渐恢复平直,但由于水冷过程中发生塑性变形,终冷时厚度方向上贝氏体含量的差异,卷取时带钢边部依然有-9 mm的翘曲量.上下表面的不均匀冷却是引起翘曲的根本原因.在保证X70管线钢性能条件下,采用1.58的下上水比工艺,卷取时边部翘曲量仅为-0.58 mm,合适的下上水比能大幅度减小层流冷却过程中带钢的横向翘曲.  相似文献   

18.
针对B钢厂2250 mm热轧生产线层流冷却系统卷取温度预报命中率低的问题,采用差分进化算法优化后的梯度提升决策树建立带钢卷取温度预测模型(DE-GBDT),并对DE-GBDT预测模型与3个基础预测模型(梯度提升决策树(GBDT)、支持向量机(SVM)、小波神经网络(WNN)预测模型)以及差分进化算法优化后的支持向量机(...  相似文献   

19.
热轧带钢层流冷却,对带钢的综合性机械性能的优劣起着决定性作用。本文以现代轧机水平为起点进行了设计、试验、分析、探讨,对日本 IHI 设计、制造的层流冷却系统的有关参数提出疑问和实验数据,发现了层流流束滴流现象。本文以我厂自行设计制造前两套1700热带钢连轧机为基础,以 IHI 设计制造的为根据,以大幅度提高轧制速度而无需增长冷却输出辊道和加设冷却设备,节约大量基建投资和设备费用为立足点,大胆地探讨了最新的冷却系统《无惯性瀑式层流冷却系统》。本文介绍了这种系统的构成及其工作原理。二级电子计算机控制,建立温度反馈。冷却水耗量及主要自控程序参数曲线。瀑式射流咀流量公式,瀑式层流压力的分析与理论推导及该琐工程的经济意义等。  相似文献   

20.
利用神经网络提高热轧带钢卷取温度的控制精度   总被引:2,自引:0,他引:2  
针对热轧带钢层流冷却过程的复杂性,以国内某热轧厂层流冷却系统为例,分析了层流冷却系统的组成以及相应的空冷和水冷数学模型.采用神经网络与数学模型相结合的方法,对带钢实测卷取温度与目标值的偏差进行了预报,证明利用神经网络能较好预测卷取温度的偏差值,进而对数学模型中的参数进行调整,实现高精度的卷取温度控制.结果表明,卷取温度比传统数学模型控制的标准差降低了21.94%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号