首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endomannosidase provides an alternate glucose-trimming pathway in the Golgi apparatus. However, it is unknown if the action of endomannosidase is dependent on the conformation of the substrate. We have investigated the processing by endomannosidase of the α1-antitrypsin oligosaccharides and its disease-causing misfolded Z and Hong Kong variants. Oligosaccharides of wild-type and misfolded α1-antitrypsin expressed in castanospermine-treated hepatocytes or glucosidase II-deficient Phar 2.7 cells were selectively processed by endomannosidase and subsequently converted to complex type oligosaccharides as indicated by Endo H resistance and PNGase F sensitivity. Overexpression of endomannosidase in castanospermine-treated hepatocytes resulted in processing of all oligosaccharides of wild-type and variants of α1-antitrypsin. Thus, endomannosidase does not discriminate the folding state of the substrate and provides a back-up mechanism for completion of N-glycosylation of endoplasmic reticulum-escaped glucosylated glycoproteins. For exported misfolded glycoproteins, this would provide a pathway for the formation of mature oligosaccharides important for their proper trafficking and correct functioning. Received 18 April 2006; received after revision 12 June 2006; accepted 15 June 2006  相似文献   

2.
Endomannosidase is a Golgi-localized endoglycosidase, which provides an alternate glucosidase-independent pathway of glucose trimming. Using a protease protection assay we demonstrated that Golgi-endomannosidase is a type II membrane protein. The first 25 amino acids of this protein, containing the cytoplasmic tail and the transmembrane domain, were sufficient for Golgi retention of fused reporter proteins alpha1-antitrypsin or green fluorescent protein. However, shortening or deletion of the transmembrane domain prevented Golgi localization, while lengthening it partially reduced Golgi retention of the enzyme. Substitution of the highly conserved positively charged amino acids within the cytoplasmic tail had neither an effect on type II topology nor on the inherent Golgi localization of the enzyme. In contrast, cytoplasmic tail-deleted rat endomannosidase possessed an inverted topology resulting in endoplasmic reticulum mislocalization. Thus, proper topology rather than the presence of positively charged amino acids in the cytoplasmic tail is critical for Golgi localization of rat endomannosidase.  相似文献   

3.
Misfolded or incompletely assembled multisubunit glycoproteins undergo endoplasmic reticulum-associated degradation (ERAD) regulated in large measure by their N-linked polymannose oligosaccharides. In this quality control system lectin interaction with Glc3Man9GlcNAc2 glycans after trimming with endoplasmic reticulum (ER) -glucosidases and -mannosidases sorts out persistently unfolded glycoproteins for N-deglycosylation and proteolytic degradation. Monoglucosylated (Glc1Man9GlcNAc2) glycoproteins take part in the calnexin/calreticulin glucosylation-deglucosylation cycle, while the Man8GlcNAc2 isomer B product of ER mannosidase I interacts with EDEM. Proteasomal degradation requires retrotranslocation into the cytosol through a Sec61 channel and deglycosylation by peptide: N-glycosidase (PNGase); in alternate models both PNGase and proteasomes may be either free in the cytosol or ER membrane-imbedded/attached. Numerous proteins appear to undergo nonproteasomal degradation in which deglycosylation and proteolysis take place in the ER lumen. The released free oligosaccharides (OS) are transported to the cytosol as OS-GlcNAc2 along with similar components produced by the hydrolytic action of the oligosaccharyltransferase, where they together with OS from the proteasomal pathway are trimmed to Man5GlcNAc1 by the action of cytosolic endo--N-acetylglucosaminidase and -mannosidase before entering the lysosomes. Some misfolded glycoproteins can recycle between the ER, intermediate and Golgi compartments, where they are further processed before ERAD. Moreover, properly folded glycoproteins with mannose-trimmed glycans can be deglucosylated in the Golgi by endomannosidase, thereby releasing calreticulin and permitting formation of complex OS. A number of regulatory controls have been described, including the glucosidase-glucosyltransferase shuttle, which controls the level of Glc3Man9GlcNAc2-P-P-Dol, and the unfolded protein response, which enhances synthesis of components of the quality control system.Received 26 January 2004; accepted 25 February 2004  相似文献   

4.
CYLD is a protein with tumor suppressor properties which was originally discovered associated with cylindromatosis, an inherited cancer exclusively affecting the folicullo-sebaceous-apocrine unit of the epidermis. CYLD exhibits deubiquitinating activity and acts as a negative regulator of NF-κB and JNK signaling through its interaction with NEMO and TRAF2. Recent data suggest that this is unlikely to be its unique function in vivo. CYLD has also been shown to control other seemingly disparate cellular processes, such as proximal T cell receptor signaling, TrkA endocytosis and mitosis. In each case, this enzyme appears to act by regulating a specific type of polyubiquitination, K63 polyubiquitination, that does not result in recognition and degradation of proteins by the proteasome but instead controls their activity through diverse mechanisms. Received 6 October 2007; received after revision 2 November 2007; accepted 23 November 2007  相似文献   

5.
Unique evolution of Bivalvia arginine kinases   总被引:1,自引:0,他引:1  
The clams Pseudocardium, Solen, Corbicula and Ensis possess a unique form of arginine kinase (AK) with a molecular mass of 80 kDa and an unusual two-domain structure, a result of gene duplication and subsequent fusion. These AKs also lack two functionally important amino acid residues, Asp62 and Arg193, which are strictly conserved in other 40-kDa AKs and are assumed to be key residues for stabilizing the substrate-bound structure. However, these AKs show higher enzyme activity. The cDNA-derived amino acid sequences of 40-kDa AKs from the blood clam Scapharca broughtonii and the oyster Crassostrea gigas were determined. While Asp62 and Arg193 are conserved in Scapharca AK, these two key residues are replaced by Asn and Lys, respectively, in Crassostrea AK. The native enzyme from Crassostrea and both of the recombinant enzymes show an enzyme activity similar to that of two-domain clam AKs and at least twofold higher than that of other molluskan AKs. Although the replacement of Asp62 or Arg193 by Gly in normal AK causes a considerable decrease in Vmax (6–15% of wild-type enzyme) and a two- to threefold increase in Km for arginine, the same replacement in Scapharca AK had no pronounced effect on enzyme activity. Together with the observation that bivalve AKs are phylogenetically distinct from other molluskan AKs, these results suggest that bivalve AKs have undergone a unique molecular evolution; the characteristic stabilizing function of residues 62 and 193 has been lost and, consequently, the enzyme shows higher activity than normal.Received 14 October 2003; accepted 1 November 2003  相似文献   

6.
Human bystin was identified as a cytoplasmic protein directly binding to trophinin, a cell adhesion molecule potentially involved in human embryo implantation. Although the trophinin gene is unique to mammals, the bystin gene (BYSL) is conserved across eukaryotes. Recent studies show that bystin plays a key role during the transition from silent trophectoderm to an active trophoblast upon trophinin-mediated cell adhesion. Bystin gene knockout and knockdown experiments demonstrate that bystin is essential for embryonic stem cell survival and trophectoderm development in the mouse. Furthermore, biochemical analysis of bystin in human cancer cells and mouse embryos indicates a function in ribosomal biogenesis, specifically in processing of 18S RNA in the 40S subunit. Strong evidence that BYSL is a target of c-MYC is consistent with a role for bystin in rapid protein synthesis, which is required for actively growing cells. Received 30 June 2007; received after revision 7 August 2007; accepted 29 August 2007  相似文献   

7.
Angiotensin-converting enzyme (ACE) and ACE2 are highly homologous metalloproteases that provide essential catalytic functions in the renin-angiotensin system (RAS). Angiotensin II is one key effector peptide of the RAS, inducing vasoconstriction and exerting multiple biological functions. ACE cleaves angiotensin I to generate angiotensin II, whereas ACE2 reduces angiotensin II levels. Accumulating evidence has demonstrated a physiological and pathological role of ACE2 in the cardiovascular systems. Intriguingly, the SARS coronavirus, the cause of severe acute respiratory syndrome (SARS), utilizes ACE2 as an essential receptor for cell fusion and in vivo infections. Moreover, recent studies have demonstrated that ACE2 protects murine lungs from acute lung injury as well as SARS-Spike protein-mediated lung injury, suggesting a dual role of ACE2 in SARS infections and protection from ARDS. Received 18 May 2006; received after revision 12 March 2007; accepted 24 April 2007  相似文献   

8.
Human erythrocyte pyrimidine 5′-nucleotidase, PN-I, catalyzes the dephosphorylation of pyrimidine nucleoside monophosphates. The enzyme also possesses phosphotransferase activity, transferring phosphate groups between pyrimidine nucleoside monophosphates and various pyrimidine nucleosides. Deficiency of the enzyme activity is associated with a hemolytic anemia. PN-I cDNA has been expressed in Escherichia coli, yielding a fully active recombinant enzyme, which was purified to homogeneity and extensively characterized. Multiple sequence alignment of PN-I and homologues proteins revealed the existence of conserved regions, whose importance in catalysis was examined by performing experiments designed to intercept covalent intermediates as strongly suggested by our previous kinetic studies. Furthermore, a functional analysis of the enzyme was carried out through site-directed mutagenesis designed on the basis of the sequence of the identified conserved regions as well as mutations observed in PN-I-deficient patients.Received 25 March 2005; received after revision 3 May 2005; accepted 13 May 2005  相似文献   

9.
dng1 is a Dictyostelium homologue of the mammalian tumor suppressor ING gene. DNG1 protein localizes in the nucleus, and has a highly conserved PHD finger domain found in chromatin-remodeling proteins. Both dng1 disruption and overexpression impaired cell proliferation. In dng1-null cells, the progression of differentiation was delayed in a cell-density-dependent manner, and many tiny aggregates were formed. Exogenously applied cAMP pulses reversed the inhibitory effect caused by dng1 disruption on the aggregation during early development, but formation of tiny aggregates was not restored. dng1-overexpressing cells acquired the ability to undergo chemotaxis to cAMP earlier and exhibited enhanced differentiation. These phenotypes were found to be coupled with altered expressions of early genes such as cAMP receptor 1 (car1) and contact site A (csA). Furthermore, disordered histone modifications were demonstrated in dng1-null cells. These results suggest a regulatory role of dng1 in the transition of cells from growth to differentiation.Received 29 December 2004; received after revision 24 May 2005; accepted 26 May 2005  相似文献   

10.
A cold-active salmon goose-type lysozyme with high heat tolerance   总被引:2,自引:2,他引:0  
The Atlantic salmon (Salmo salar) goose-type lysozyme gene was isolated and revealed alternative splicing within exon 2 affecting the signal peptide-encoding region. The lysozyme was produced in Escherichia coli, and the recombinant enzyme showed a high specific lytic activity that was stimulated by low or moderate concentrations of mono- or divalent cations. Relative lytic activities of 70 and 100% were measured at 4°C and 22°C, respectively, and there was no detectable activity at 60°C. However, 30% activity was retained after heating the enzyme for 3 h at 90°C. This unique combination of thermal properties was surprising since the salmon goose-type lysozyme contains no cysteines for protein structure stabilization through disulphide bond formation. The results point to a rapid reversal of inactivation, probably due to instant protein refolding. Received 14 August 2007; received after revision 07 September 2007; accepted 12 September 2007  相似文献   

11.
Protein-O-mannosyltransferases (Pmt proteins) catalyse the addition of mannose to serine or threonine residues of secretory proteins. This modification was described first for yeast and later for other fungi, mammals, insects and recently also for bacteria. O-mannosylation depends on specific isoforms of the three Pmt1, 2 and 4 subfamilies. In fungi, O-mannosylation determines the structure and integrity of cell walls, as well as cellular differentiation and virulence. O-mannosylation of specific secretory proteins of the human fungal pathogen Candida albicans and of the bacterial pathogen Mycobacterium tuberculosis contributes significantly to virulence. In mammals and insects, Pmt proteins are essential for cellular differentiation and development, while lack of Pmt activity causes Walker-Warburg syndrome (muscular dystrophy) in humans. The susceptibility of human cells to certain viruses may also depend on O-mannosyl chains. This review focuses on the various roles of Pmt proteins in cellular differentiation, development and virulence. Received 6 September 2007; received after revision 3 October 2007; accepted 5 October 2007  相似文献   

12.
The BAG (Bcl-2 associated athanogene) family is a multifunctional group of proteins that perform diverse functions ranging from apoptosis to tumorigenesis. An evolutionarily conserved group, these proteins are distinguished by a common conserved region known as the BAG domain. BAG genes have been found in yeasts, plants, and animals, and are believed to function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in carcinogenesis, HIV infection, and Parkinson’s disease. These proteins are therefore potential therapeutic targets, and their expression in cells may serve as a predictive tool for such diseases. In plants, the Arabidopsis thaliana genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. Three members contain a calmodulin-binding domain possibly reflecting differences between plant and animal programmed cell death. This review summarizes current understanding of BAG proteins in both animals and plants. Received 21 November 2007; received after revision 17 December 2007; accepted 2 January 2008  相似文献   

13.
The inflammatory effect of unmethylated CpG DNA sequences represents a major obstacle to the use of cationic lipids for in vivo gene therapy. Although the mechanism of CpG-induced inflammatory response is rather well understood nowadays, few solutions have been designed to circumvent this effect in gene therapy experiments. Our previous work has shown that a refractory state towards inflammation can be elicited by preinjecting cationic liposomes. Here, we present evidence that diC14-amidine liposomes confer new anti-inflammatory properties to phospholipids from low-density lipoprotein (LDL) and even to synthetic phospholipids for which such an observation has not been reported so far. Whereas oxidation of LDL lipids was a prerequisite for any anti-inflammatory activity, lipid oxidation is no longer required in our experiments, suggesting that cationic lipids transport phospholipids through a different route and affect different pathways.This opens up new possibilities for manipulating inflammatory responses in gene therapy protocols but also in a general manner in immunological experiments. Received 12 November 2007; received after revision 4 December 2007; accepted 4 December 2007  相似文献   

14.
The lysozyme of the marine bilave Tapes japonica (13.8 kDa) is a novel protein. The protein has 46% homology with the destabilase from medicinal leech that has isopeptidase activity. Based on these data, we confirmed hydrolysis activity of T. japonica lysozyme against three substrates: L--Glu-pNA, D--Glu-pNA, and -(-Glu)-L-Lys. The optimal pH of chitinase and isopeptidase activity was 5.0 and 7.0, respectively. The isopeptidase activity was inhibited with serine protease inhibitor, but the lytic and chitinase activities were not. Moreover, only isopeptidase activity is decreased by lyophilization, but lytic and chitinase activities were not. We conclude that T. japonica lysozyme expresses isopeptidase and chitinase activity at different active sites.Received 25 February 2003; received after revision 29 May 2003; accepted 12 June 2003  相似文献   

15.
Role of heregulin in human cancer   总被引:3,自引:0,他引:3  
Heregulin (HRG) is a soluble secreted growth factor, which, upon binding and activation of ErbB3 and ErbB4 transmembrane receptor tyrosine kinases, is involved in cell proliferation, invasion, survival and differentiation of normal and malignant tissues. The HRG gene family consists of four members: HRG-1, HRG-2, HRG-3 and HRG-4, of which a multitude of different isoforms are synthesized by alternative exon splicing, showing various tissue distribution and biological activities. Disruption of the physiological balance between HRG ligands and their ErbB receptors is implicated in the formation of a variety of human cancers. The general mechanisms involved in HRG-induced tumorigenesis is discussed. Received 8 March 2007; received after revision 6 May 2007; accepted 9 May 2007  相似文献   

16.
tRNase Z: the end is not in sight   总被引:1,自引:0,他引:1  
Although the enzyme tRNase Z has only recently been isolated, a plethora of data has already been acquired concerning the enzyme. tRNase Z is the endonuclease that catalyzes the removal of the tRNA 3′ trailer, yielding the mature tRNA 3′ end ready for CCA addition and aminoacylation. Another substrate cleaved by tRNase Z is the small chromogenic phosphodiester bis(p-nitrophenyl)phosphate (bpNPP), which is the smallest tRNase Z substrate known so far. Hitherto the biological function as tRNA 3′-end processing enzyme has been shown only in one prokaryotic and one eukaryotic organism, respectively. This review summarizes the present information concerning the two tRNase Z substrates pre-tRNA and bpNPP, as well as the metal requirements of tRNase Z enzymes. Received 29 March 2007; received after revision 15 May 2007; accepted 21 May 2007  相似文献   

17.
The 129 mouse strain develops congenital testicular germ cell tumors (TGCTs) at a low frequency. TGCTs in mice resemble the testicular tumors (teratomas) that occur in human infants. The genes that cause these tumors in 129 have not been identified. The defect at the Ter locus increases TGCT incidence such that 94% of 129-Ter/Ter males develop TGCTs. The primary effect of the Ter mutation is progressive loss of primordial germ cells (PGCs) during embryonic development. This results in sterility in adult Ter/Ter mice on all mouse strain backgrounds. However, on the 129 background, Ter causes tumor development in addition to sterility. Therefore, Ter acts as a modifier of 129-derived TGCT susceptibility genes. Ter was identified to be a mutation that inactivates the Dead-end1 (Dnd1) gene. In this perspective, I discuss the possible areas of future investigations to elucidate the mechanism of TGCT development due to Dnd1 inactivation. Received 29 September 2006; received after revision 29 January 2007; accepted 19 February 2007  相似文献   

18.
Tissue hypoxia results in rapid angiogenesis in vivo, triggered by angiogenic proteins, including vascular endothelial growth factor (VEGF). Current views of tissue viability are founded on whether ‘deeper-lying’ cells receive sufficient nutrients and oxygen for normal activity and ultimately survival. For intact tissues, levels of such essential nutrients are governed by micro-vascular perfusion. However, there have been few effective quantitatively defined 3D models, which enable testing of the interplay or interdependence of matrix and cell density, and path diffusion on oxygen consumption in vitro. As a result, concepts on cell vulnerability to low oxygen levels, together with the nature of cellular responses are ill defined. The present study has adapted a novel, optical fibre-based system for in situ, real-time oxygen monitoring within three-dimensionally-spiralled cellular collagen constructs, which were then unfurled to enable quantitative, spatial measurements of VEGF production in different parts of the same construct exposed to different oxygen levels. A VEGF response was elicited by cells exposed to low oxygen levels (20 mmHg), primarily within the construct core. Received 3 August 2007; received after revision 24 October 2007; accepted 29 October 2007 An erratum to this article is available at .  相似文献   

19.
The phytotoxic protein PcF (Phytophthora cactorum-Fragaria) is a 5.6-kDa cysteine-rich, hydroxyproline- containing protein that is secreted in limited amounts by P. cactorum, an oomycete pathogen of tomato, strawberry and other relevant crop plants. Although we have shown that pure PcF triggers plant reactivity, its mechanism of action is not yet understood. Here we show that PcF, like other known fungal protein elicitors involved in pathogen-plant interaction, stimulates the activity of the defense enzyme phenylalanine ammonia a key step in understanding the mechanism of action of PcF at a molecular level is knowledge of its three-dimensional structure, we overexpressed this protein extracellularly in Pichia pastoris. The preliminary structural and functional characterization of a recombinant PcF homologue, N4-rPcF, is reported. Interestingly, although N4-rPcF is devoid of proline hydroxylation and has four additional amino acid residues attached to its N terminus, its secondary structure and biological activity are indistinguishable from wild-type PcF.Received 22 February 2003; received after revision 25 March 2003; accepted 14 April 2003  相似文献   

20.
Summary Streptomyces species 3M grew in peptone yeast extract medium with 1000 g/ml K2Cr2O7. Incubation of the chromate with different cell fractions in the presence of NADH and NADPH resulted in a decrease of Cr6+ in the reaction mixture. The level of Cr6+ was reduced by 82.7% by a particulate cell fraction obtained by centrifugation at 105,000×g for 1 h, in the presence of NADH. The reducing enzyme was associated with this cell fraction. The enzyme was constitutive and reduced Cr6+ to Cr3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号