首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为减小加筋板振动主动控制系统的时滞影响,提升系统的稳定性和控制效果,在改进指数趋近律滑模变控制法的基础上,提出应用Smith预估法进行时滞补偿。设计出针对改进指数趋近律的时滞问题补偿策略,并根据Lyapunov第二法证明了改进指数趋近律的Smith预估补偿算法的稳定性,最后利用cSPACE平台进行加筋板振动主动控制实验。实验结果表明:针对加筋板的第一阶振动模态,与传统指数趋近律相比,复合Smith预估器的改进指数趋近律滑模变控制方法的时滞补偿和振动抑制效果更为显著,减振效果达到了2.878V,提升了0.639V。  相似文献   

2.
基于模糊趋近律的自适应滑模变结构控制   总被引:1,自引:0,他引:1  
针对一类非线性不确定系统,把自适应模型跟踪控制和模糊控制与趋近律相结合,提出一种新的自适应模糊滑模变结构控制方案.不仅消除了滑模变结构控制固有的高频颤动现象,对模型不确定性和外部干扰具有较强的鲁棒性,而且改善了系统到达段的品质,同时跟踪误差可收敛到零的一个邻域内.仿真结果也表明了该方案的正确性.  相似文献   

3.
为提高异步电机调速系统抗干扰能力,改善其动态特性,以异步电机矢量控制系统为基础,针对电流环和转速环分别设计了电流滑模控制器和转速滑模控制器,并利用指数趋近律来削弱抖振,详细阐述了控制器设计步骤。利用MATLAB/SIMULINK对滑模控制系统进行仿真,并与PI控制系统进行对比分析。最后利用dSPACE实时仿真系统对异步电机滑模变结构控制系统进行实验验证。结果表明,所设计的异步电机滑模变结构控制系统动态特性更好,抗干扰能力更强。  相似文献   

4.
电动助力转向系统实际上存在着系统参数变化、路面干扰等不确定性因素,传统的PID控制方法只能在特定的系统参数情况下基本满足控制要求,无法处理系统的不确定性.针对这一问题,采用指数趋近律方法设计了滑模变结构控制器.仿真结果表明,滑模变结构控制方法具有较好的稳态性能和动态性能,而且其滑动模态对系统参数的摄动具有完全的自适应性,可以对电动助力转向系统实现鲁棒控制.  相似文献   

5.
为了解决时滞问题带来的控制系统无线传输信号滞后问题,提高压电加筋板振动系统控制效果,提出一种基于改进幂次趋近律滑模算法的自适应Smith时滞补偿方法,并通过李亚普洛夫第二法则验证了稳定性,最终使得系统控制效果得到有效提升。实验结论表明,添加自适应Smith时滞补偿加筋板无线振动控制系统的控制效果为1.147V,相较于未添加自适应预估补偿的1.436V,改进后的振动幅值降低0.289V,控制效果提升13.50%。  相似文献   

6.
建筑结构滑模控制的趋近律方法   总被引:8,自引:0,他引:8  
利用滑动模态控制方法对建筑结构进行振动控制,给出了基于指数趋近形式的控制律方法。当最大控制力受限时,给出了饱和滑模的控制方法和切换函数的确定方法。对以2种情况进行了研究:一种是,结构每一层都安装有传感器的全状态输出反馈滑模控制;另一种则是,只在结构重要位置上安装有传感器,并只利用此有限数量的传感器输出进行控制有有限状态输出滑模控制。算例结果表明,所提出的滑模控制方法能有效减小结构地震峰值响应,效果  相似文献   

7.
结构变结构控制的指数趋近律改进方法   总被引:9,自引:0,他引:9  
提出了一种指数趋近律,当正常运动段远离切换面时,能快速地趋向切换面,当运动段接近切换面时,趋近速度又大大降低,与常用指数趋近律相比,过渡时间,系统的抖动以及所需控制力都进一步减小,将这一理论应用到三层剪切型框架进行数值模拟,振动控制效果明显。  相似文献   

8.
研究了一种自调节趋近律的滑模变结构控制器,以切换函数s作为偏差,趋近速度由一个PID控制器调节,目的是使到达滑模面的穿越速度最小从而减少抖振,同时使到达滑模面时间最短.根据航空发动机稳态数学模型,设计其滑模变结构控制律,构建了基于PXI总线的发动机滑模控制平台.通过半实物实验结果证明,该控制器响应速度快,高频抖振很小,具有很强的鲁棒性能和跟踪性能.  相似文献   

9.
自动转向滑模变结构控制参数选取方法   总被引:4,自引:0,他引:4  
建立了基于车辆动力学模型的车辆-道路系统模型,通过线性变换,得到了用横向位置偏差和方向偏差描述的系统状态方程.采用滑模变结构控制理论,设计了基于指数趋近律的自动转向控制算法.分析了趋近律函数的指数趋近项参数和等速趋近项参数对系统输出的影响,并基于侧向加速度的要求提出了参数选取方法.仿真结果表明,根据提出的参数选取方法设计的控制算法在高速路径跟踪时,具有良好的道路跟踪精度及动态性能.  相似文献   

10.
在研究变结构控制中常用到的非线性控制律的基础上,提出了一种变结构控制律,并将它用于潜艇深度控制系统的仿真研究中。结果表明,使用该控制律使控制系统的调节时间缩短,并且在滑动模态上的抖动明显减小。  相似文献   

11.
在Buck boost电路拓扑结构和工作原理分析的基础上,引入虚拟开关量构建Buck boost电路连续导电模式和断续导电模式的合并状态方程,在合并状态方程基础上采用等效控制法推导Buck boost变换器的PWM滑模变结构控制方程,将指数趋近率应用于控制方程,并将等效控制变量作为PWM控制的占空比,得到基于指数趋近率的PWM滑模变结构控制方法。仿真实验和实测验证结果表明:Buck boost变换器的PWM滑模变结构控制方法能使Buck boost变换器快速达到稳定状态,具有较好的动态特性和鲁棒性。  相似文献   

12.
基于多模型在线辨识的滑模变结构控制   总被引:1,自引:0,他引:1  
为了改善复杂非线性系统中传统滑模变结构控制系统的控制效果,提出了一种将多模型在线建模与滑模变结构控制结合的方案.首先,根据输入输出数据利用在线数据聚类的方法建立多个局部模型,实时对局部模型进行更新,并通过加权综合获得非线性系统的在线辨识模型;然后,针对系统的辨识模型设计基于趋近律的滑模变结构控制器.仿真结果表明,控制方案对系统模型的不确定性具有良好的鲁棒性.  相似文献   

13.
迭代学习控制是一种新型控制算法,它不依赖于动态系统的精确数学模型,通过重复执行同一任务来减少误差,使系统输出尽可能逼近理想值的方法.滑模变结构控制具有很强的鲁棒性,将滑模控制算法引入ILC,提出两种基于滑模变结构的迭代学习控制算法.仿真结果表明随着迭代次数的增加,误差逐渐减小并趋于平稳,得到较好的跟踪效果.  相似文献   

14.
研究了将离散时间变结构控制应用于Acrobot系统的平衡控制器设计的问题.首先给出了Acrobot在垂直向上平衡点处的离散化数学模型.分析了离散指数趋近律存在抖振的机理,针对其不足给出了一种改进的趋近律,并将其应用于Acrobot系统的控制中,设计了离散时间变结构平衡控制器.仿真结果表明,改进的趋近律可有效地减小系统的抖振,并保证系统渐近稳定,实现了Acrobot系统基于滑模的离散时间变结构控制.  相似文献   

15.
基于网络远程控制循环中存在随机通信延迟时间,影响控制循环的稳定性.提出采用滑模变结构控制来消除控制循环中随机通信延迟时间对稳定性的影响,研究了滑模变结构控制的实现方法、滑动平面求解、控制函数的实现等.滑模变结构控制的仿真结果与远程机器人直接控制结果的对比表明,前者能够保证在存在随机通信延迟时间时控制系统的稳定,证明了滑模变结构控制应用于机器人远程控制的合理性.  相似文献   

16.
飞机飞行的范围广泛,复杂,不可能得到精确的飞机数学模型,所以,常规的控制理论应用于飞行控制,效果不佳,模型跟踪变结构控制理论不依赖数学模型,而能对理想模型进行跟踪,使飞机具有良好的性能,本文研究了变结构滑模控制在飞行控制系统的应用,首先,对滑模进行极点配置,使滑模有良好的动态特性,设计了一个比例积分切换超平面,确保消稳态误差,采用饱和控制技术,消除了抖振现象,对系统进行了数字仿真,表明系统不仅实现了无抖模型跟踪,而且具有很中的鲁棒性。  相似文献   

17.
为了方便分析与系统设计,将非线性的TCR型SVC控制系统进行线性化,建立了基于滑模变结构的控制系统模型,为了检验模型的准确性,并运用Matlab软件进行了仿真.  相似文献   

18.
永磁无刷直流电机是多变量、强耦合的非线性系统,为进一步深入研究无位置BLDCM控制方法,以解决估算转子位置以及传统滑模观测器的抖振等问题,提出基于改进型滑模观测器的无位置BLDCM控制方法,引入正弦函数的[-π/2,π/2]部分作为滑模观测器的控制函数,以削弱抖振;同时构建反电动势观测器直接提取反电动势信号,并利用李雅普诺夫理论证明其稳定性,引入CORDIC算法以获取电机转子位置和转速.仿真实验结果表明,该控制策略能够准确估计电机转子位置,同时削弱观测器的抖振问题,提高系统精度和可靠性.  相似文献   

19.
相对于传统的液压式或气压式制动系统,电子机械式制动系统因具有结构简单、响应时间短以及制动效率高等优点正受到越来越高的重视.在设计出一套电子机械式制动装置模型的基础上,提出了一种适合安装有电子机械式制动系统的整车制动防抱死滑模变结构控制器.通过动力学仿真软件Carsim建立整车仿真模型,并与Simulink进行联合控制仿真.将仿真结果与传统的基于逻辑门限值控制的液压制动器制动性能进行比较,验证了滑模变结构控制方法在安装有电子机械式制动系统的整车制动防抱死系统上的有效性及制动性能的优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号