共查询到18条相似文献,搜索用时 78 毫秒
1.
【目的】在模拟胃液条件下研究重金属Cu~(2+)和Zn~(2+)对内源致癌性N-二甲基亚硝胺(NDMA)形成的影响,并进一步探讨其作用机理。【方法】分别用气相色谱-质谱联用法(GC-MS)和离子色谱法(IC)来测定NDMA、二甲胺(DMA)和亚硝酸根(NO_2~-)含量。【结果】在模拟胃液条件下,Cu~(2+)和Zn~(2+)浓度高于50mg/L时,可以促进NDMA的形成,且当浓度由50mg/L增大到200mg/L时,Cu~(2+)促进率由1.16%增大到94.56%,Zn~(2+)促进率由21.32%增大到45.86%。在重金属浓度为符合或接近符合水质基准值1.0mg/L时,Cu~(2+)和Zn~(2+)对NDMA的形成也分别有16.88%和13.42%的促进率;而当重金属浓度为10mg/L时,两种离子却均抑制NDMA的形成。机理研究表明Cu~(2+)、Zn~(2+)促进NDMA的形成主要是由于其与DMA发生相互作用,进而导致NDMA形成。【结论】高浓度的Cu~(2+)和Zn~(2+)通过与DMA相互作用,形成活性中间体从而促进NDMA的生成。 相似文献
2.
以过硫酸铵为引发剂,制备壳聚糖(CS)和丙烯酸(AA)的接枝共聚物(CS-g-PAA),采用静电纺丝技术将其制备成纤维膜,考察不同接枝率、电纺溶液浓度、直流电压对电纺纤维的影响,用红外光谱、扫描电镜对共聚物和纤维膜的结构进行表征,测试该纤维对Cu2+、Cd2+离子的吸附性能。实验结果表明,接枝率越高电纺纤维形貌越好,相对最佳电纺条件为溶液质量分数15%和电纺电压11 kV;CS-g-PAA电纺纤维膜对Cu2+、Cd2+的吸附量相比CS提高了25.39%和82.28%,相比CS-g-PAA其吸附速度更快,但其饱和吸附容量比较接近。 相似文献
3.
通过静态吸附试验,研究一种由超分子受体化合物磺化硫杂杯芳烃(TCAS)与树脂结合的产物-新型TCAS吸附树脂对重金属Cu2+的吸附去除性能,并初步探讨了吸附机理。试验研究结果表明:当温度为20℃,0.5gTCAS吸附树脂对10 mL浓度为5.0 mg.L-1的Cu2+溶液吸附120 min时,Cu2+的去除率可达到99%以上,pH值对TCAS吸附树脂吸附重金属的影响不大,吸附在TCAS吸附树脂上的Cu2+可洗脱回收,TCAS吸附树脂也可再生利用。 相似文献
4.
研究了海泡石粘土矿物对水中微量镭的吸附行为,讨论了海泡石吸附镭的影响因素及吸附机理.结果表明,天然海泡石矿物对镭有一定吸附作用,其吸附分配系数Kd值为9.1×103mL/g. 相似文献
5.
用溶胶-凝胶法制备纳米羟基磷灰石(n-HAP)吸附水溶液中的铜离子(Cu2+),研究反应时间、体系pH值和Cu2+初始浓度等因素对吸附行为的影响,并探讨吸附机理。结果表明:在溶液pH=4.5~7.5,n-HAP对Cu2+的吸附升高趋势近似线性关系;反应60 min时基本达到吸附平衡;pH>7.5时,溶液中Cu2+几乎完全去除,最大吸附量为51.28 mg/g。n-HAP对Cu2+有良好的吸附作用,吸附类型为Langmu ir等温吸附,吸附过程符合拟二级反应动力学方程。 相似文献
6.
采用滴定-固化包裹法制备得到以海藻酸钙(Alg)为壳,内包聚苯乙烯磺酸钠溶液(PSSA)的椭球状软胶囊
(PSSA@Alg软胶囊),用其吸附溶液中的Cu(II)和Cd(II).结果表明: PSSA@ Alg 软胶囊对溶液中Cu(II)和Cd(II)
的吸附量随溶液 pH 升高而增大,吸附过程包括表面吸附和固态海藻酸钙壳内缓慢扩散, 符合拟二级动力学模型,
分别在约240,360 min时达到吸附平衡;等温吸附数据与Langmuir模型拟合良好,25 ℃ 条件下,PSSA@Alg软胶囊
对Cu(II)和Cd(II)的最大吸附量分别为143.92,193.64 mg·g-1. 海藻酸钙上的羧基和聚苯乙烯磺酸钠上的磺酸基
团在重金属离子吸附过程中起重要作用. 相似文献
7.
利用改良离心法从好氧颗粒污泥中提取胞外聚合物(EPS),并研究其对重金属废水中Pb2+和Cd2+的吸附行为。结果表明,EPS对Pb2+和Cd2+具有很强的吸附能力,吸附行为符合Langmuir等温式,拟合得到的最大吸附量分别可达534.76和478.47 mg/g。Pb2+和Cd2+在EPS上存在竞争吸附,EPS对Pb2+的吸附选择性更强。Cd2+对EPS吸附Pb2+有一定的抑制作用,但Pb2+的存在对EPS吸附Cd2+具有显著的抑制作用。傅立叶红外光谱(FT-IR)和三维荧光光谱(EEM)测定表明,实验提取的EPS含有大量疏水和亲水性基团,因此可通过络合作用、离子交换、螯合等多种作用与重金属发生强结合。对重金属起主要吸附作用的是存在于EPS蛋白质组分中的—COOH,—NH2,—CH2—,—OH及—C=O官能团。研究表明,EPS吸附Pb2+的主要机理为离子交换和络合作用,而对Cd2+的吸附则主要通过络合作用完成。 相似文献
8.
以人工合成的纳米碳羟基磷灰石(n-CHAP)吸附水溶液中的镉离子(Cd2+),考查pH值、反应时间及Cd2+初始浓度等因素对吸附效果的影响,并探讨吸附机理。结果表明:n-CHAP对Cd2+的吸附过程符合拟二级反应动力学方程;吸附类型符合Langmuir等温吸附模型,最大吸附量为86.17 mg/g。 相似文献
9.
用凹凸棒土或膨润土制备5种吸附剂,分别与一种混凝剂连用以治理含锌电镀废水.探讨最佳的吸附条件和过程机理.结果表明废水pH值对锌去除率影响是值得注意的.当Zn2+离子初始质量浓度为5150mg/L时,最佳pH值为9.0,改性膨润土用量1g/L时,锌和色度去除率高达99.8%以上.本法比传统的方法,如单纯中和法和沉淀法,要好得多. 相似文献
10.
11.
以天然硅藻土为原料,通过微波、超声、酸化制备得到"微超酸"改性硅藻土.探讨了该改性硅藻土对水溶液中Pb~(2+)、Cu~(2+)、Cd~(2+)3种重金属离子的吸附效果及影响因素.实验结果表明,在一定范围内,提高溶液pH值、延长吸附时间、升高吸附温度、增加吸附剂的用量均可提高3种金属离子的吸附去除效果;"微超酸"改性硅藻土对3种金属离子的等温吸附符合Langmuir方程. 相似文献
12.
【目的】以马尾藻粉为生物吸附剂,研究其在静态实验中对Cd2+ 和Ni2+ 的吸附及脱附能力,并对吸附速度、动力学、重金属选择性和吸附剂再生等问题进行探讨.【方法】采用单因素法分析pH 值、初始浓度、平衡离子类型等条件因素对重金属吸附容量的影响,采用准一级和准二级动力学模型对Cd2+ 、Ni2+ 的吸附数据进行拟合.【结果】Cd2+ 的最佳吸附条件为pH 值4.5、初始浓度500mg/L、平衡离子为NO3ˉ,Ni2+ 的最佳吸附条件为pH 值3.0、初始浓度900mg/L、平衡离子为Clˉ;Cd2+ 、Ni2+ 的吸附平衡到达时间分别为50min和25min;准二级动力学模型对吸附数据的拟合效果更好,相关系数(犚2 )均大于0.99;对混合溶液中不同重金属的选择性吸附顺序为Pb2+ 〉Ni2+ 〉Cd2+ 〉Mn2+ ;1.0mol/L HCl对Cd2+ 、Ni2+ 的理论洗脱率均可达到99%.【结论】马尾藻粉对Cd2+ 和Ni2+ 的吸附容量大,吸附条件温和,重金属脱附率高,是一种性能良好的生物吸附剂. 相似文献
13.
以罗望子胶原粉(TKP)为基料,氯乙酸钠(SMCA)为羧甲基醚化剂,环氧氯丙烷(ECH)为交联剂制备了取代度(DS)为0.42,0.64和0.88的3种交联羧甲基罗望子胶(CCMTKP),探究其对水溶液中Cd2+的吸附行为。结果表明:适宜吸附的pH值范围为2~6;吸附剂较佳用量为0.5%(质量分数);3种CCMTKP对Cd2+的吸附在15min内达到平衡,遵从二级动力学方程;吸附符合Langmuir等温吸附,CCMTKP对Cd2+的最大吸附量为64.10mg/g;再生后的CCMTKP吸附性能良好,脱吸附率高,有望作为Cd2+的吸附剂使用。 相似文献
14.
以污水处理厂污泥作为吸附剂,研究其对Cu2+、Zn2+吸附性能的差异.结果表明:污泥对Cu2+、Zn2+的吸附量均随着平衡浓度的增大而增大,且均符合Henry型和Freundlich型等温吸附过程,其中污泥对Zn2+的吸附固定能力高于对Cu2+的吸附固定能力;随处理浓度的增大,污泥对Cu2+、Zn2+的解吸率均减小,相... 相似文献
16.
介绍CPA法测定多种组分的原理,并应用该原理,对用双硫腙分光光度法同时测定混合样品中Zn^2 、Cd^2 和Pb^2 的质量浓度进行了研究,取得了较为有意义的结果。 相似文献
17.
以13X分子筛和天然黏土矿物凹凸棒土为原料,制备了13X分子筛/凹凸棒土颗粒型复合材料,并借助扫描电镜、透射电镜、X射线衍射等对复合材料结构与形貌进行表征,考察了不同煅烧温度及不同Zn~(2+)浓度条件下13X分子筛/凹凸棒土颗粒型复合材料对水中Zn~(2+)的吸附行为。结果表明,煅烧温度为550℃时,所制复合材料孔隙结构发达且抗压强度高、吸附性能好;吸附过程符合拟二级动力学,等温吸附实验数据符合Langmuir模型,复合材料对Zn~(2+)的最大吸附量可达99.01mg·g-1;吸附速率的主要控制步骤为颗粒内扩散,此外,吸附过程中同时存在离子交换和化学沉淀。 相似文献
18.
Cu2+是环境中常见二价金属离子,但其对光催化降解抗生素废水的影响有待探明.为此,构建UV-nTiO2体系并探究Cu2+共存下三类抗生素(磺胺类抗生素、氯霉素类抗生素及四环素类抗生素)的光催化降解特性.结果表明,Cu2+可显著影响抗生素光催化降解且呈"低浓度促进,高浓度抑制"效应.当Cu2+浓度介于0.001~0.03... 相似文献