首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
Russell CT  Zhang TL  Delva M  Magnes W  Strangeway RJ  Wei HY 《Nature》2007,450(7170):661-662
The occurrence of lightning in a planetary atmosphere enables chemical processes to take place that would not occur under standard temperatures and pressures. Although much evidence has been reported for lightning on Venus, some searches have been negative and the existence of lightning has remained controversial. A definitive detection would be the confirmation of electromagnetic, whistler-mode waves propagating from the atmosphere to the ionosphere. Here we report observations of Venus' ionosphere that reveal strong, circularly polarized, electromagnetic waves with frequencies near 100 Hz. The waves appear as bursts of radiation lasting 0.25 to 0.5 s, and have the expected properties of whistler-mode signals generated by lightning discharges in Venus' clouds.  相似文献   

2.
Discovery of an aurora on Mars   总被引:1,自引:0,他引:1  
In the high-latitude regions of Earth, aurorae are the often-spectacular visual manifestation of the interaction between electrically charged particles (electrons, protons or ions) with the neutral upper atmosphere, as they precipitate along magnetic field lines. More generally, auroral emissions in planetary atmospheres "are those that result from the impact of particles other than photoelectrons" (ref. 1). Auroral activity has been found on all four giant planets possessing a magnetic field (Jupiter, Saturn, Uranus and Neptune), as well as on Venus, which has no magnetic field. On the nightside of Venus, atomic O emissions at 130.4 nm and 135.6 nm appear in bright patches of varying sizes and intensities, which are believed to be produced by electrons with energy <300 eV (ref. 7). Here we report the discovery of an aurora in the martian atmosphere, using the ultraviolet spectrometer SPICAM on board Mars Express. It corresponds to a distinct type of aurora not seen before in the Solar System: it is unlike aurorae at Earth and the giant planets, which lie at the foot of the intrinsic magnetic field lines near the magnetic poles, and unlike venusian auroras, which are diffuse, sometimes spreading over the entire disk. Instead, the martian aurora is a highly concentrated and localized emission controlled by magnetic field anomalies in the martian crust.  相似文献   

3.
Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.  相似文献   

4.
The detection of impulsive low-frequency (10 to 80 kHz) radio signals, and separate very-low-frequency (approximately 100 Hz) radio 'whistler' signals provided the first evidence for lightning in the atmosphere of Venus. Later, a small number of impulsive high-frequency (100 kHz to 5.6 MHz) radio signals, possibly due to lightning, were also detected. The existence of lightning at Venus has, however, remained controversial. Here we report the results of a search for high-frequency (0.125 to 16 MHz) radio signals during two close fly-bys of Venus by the Cassini spacecraft. Such signals are characteristic of terrestrial lightning, and are commonly heard on AM (amplitude-modulated) radios during thunderstorms. Although the instrument easily detected signals from terrestrial lightning during a later fly-by of Earth (at a global flash rate estimated to be 70 s(-1), which is consistent with the rate expected for terrestrial lightning), no similar signals were detected from Venus. If lightning exists in the venusian atmosphere, it is either extremely rare, or very different from terrestrial lightning.  相似文献   

5.
通过计算和分析发现太阳系8大行星质量分布具有内在规律:行星质量取值不是任意的,而是一些特定的数值,每个行星质量由1个或2个基本质量之和构成,基本质量取值符合233律.利用前期提出的理论对此进行了解释,认为该规律与万有引力和质量的起源有关.因为万有引力起源于大尺度微子微团的运动,其引力质量等于微子微团最大速度与广义粒子半径的乘积,在最大速度相同的情况下,微团在向内逐级嵌套过程中,相邻层次的半径具有2倍或3倍的关系,在半屏蔽的情况下形成了行星质量分布的233律.利用233律估算得到行星质量与实测符合得很好,但也存在小量误差,原因在于行星周围微子微团存在密度和压力,所产生的斥力削弱了万有引力,使得测量值略小于估算值.金星和天王星存在较大相对误差的原因就在于其周围微子微团的密度过大,也是行星存在逆向自转和金星转速极慢的原因.通过分析提出了行星形成的分裂说,认为所有行星都起源于同一母行星,该行星分裂成母木星和母土星,之后2颗行星进一步分裂,形成了4颗土系行星和4颗木系行星.  相似文献   

6.
Genda H  Abe Y 《Nature》2005,433(7028):842-844
The atmospheric compositions of Venus and Earth differ significantly, with the venusian atmosphere containing about 50 times as much 36Ar as the atmosphere on Earth. The different effects of the solar wind on planet-forming materials for Earth and Venus have been proposed to account for some of this difference in atmospheric composition, but the cause of the compositional difference has not yet been fully resolved. Here we propose that the absence or presence of an ocean at the surface of a protoplanet during the giant impact phase could have determined its subsequent atmospheric amount and composition. Using numerical simulations, we demonstrate that the presence of an ocean significantly enhances the loss of atmosphere during a giant impact owing to two effects: evaporation of the ocean, and lower shock impedance of the ocean compared to the ground. Protoplanets near Earth's orbit are expected to have had oceans, whereas those near Venus' orbit are not, and we therefore suggest that remnants of the noble-gas rich proto-atmosphere survived on Venus, but not on Earth. Our proposed mechanism explains differences in the atmospheric contents of argon, krypton and xenon on Venus and Earth, but most of the neon must have escaped from both planets' atmospheres later to yield the observed ratio of neon to argon.  相似文献   

7.
考察了《纪元历》五星定合算法,构建了五星定合算法的数学模型,分析了《纪元历》五星定合算法的合理性,计算了《纪元历》五星定合算法的精度,木星、火星、土星、金星和水星的定合时刻误差的绝对值平均值分别为0.92,1.20,0.81,1.00和3.93日,定合时刻五星地面视赤经误差的绝对值平均值分别为木星0.54°,火星1.05°,土星0.59°,金星1.02°,水星4.18°.木星、土星定合算法的精度较高,火星和金星次之,水星最低.《纪元历》五星定合时刻及位置误差曲线呈现出有规律的波动,其波动周期约为行星和地球绕日公转时间的最小公倍数.  相似文献   

8.
Owen T  Bar-Nun A  Kleinfeld I 《Nature》1992,358(6381):43-46
Models that trace the origin of noble gases in the atmospheres of the terrestrial planets (Venus, Earth and Mars) to the 'planetary component' in chondritic meteorites confront several problems. The 'missing' xenon in the atmospheres of Mars and Earth is one of the most obvious; this gas is not hidden or trapped in surface materials. On Venus, the absolute abundances of neon and argon per gram of rock are higher even than those in carbonaceous chondrites, whereas the relative abundances of argon and krypton are closer to solar than to chondritic values (there is only an upper limit on xenon). Pepin has developed a model that emphasizes hydrodynamic escape of early, massive hydrogen atmospheres to explain the abundances and isotope ratios of noble gases on all three planets. We have previously suggested that the unusual abundances of heavy noble gases on Venus might be explained by the impact of a low-temperature comet. Further consideration of the probable history of the martian atmosphere, the noble-gas data from the (Mars-derived) SNC meteorites and laboratory experiments on the trapping of noble gases in ice lead us to propose here that the noble gases in the atmospheres of all of the terrestrial planets are dominated by a mixture of an internal component and contribution from impacting icy planetesimals (comets). If true, this hypothesis illustrates the importance of impacts in determining the volatile inventories of these planets.  相似文献   

9.
The loss of ions from Venus through the plasma wake   总被引:1,自引:0,他引:1  
Venus, unlike Earth, is an extremely dry planet although both began with similar masses, distances from the Sun, and presumably water inventories. The high deuterium-to-hydrogen ratio in the venusian atmosphere relative to Earth's also indicates that the atmosphere has undergone significantly different evolution over the age of the Solar System. Present-day thermal escape is low for all atmospheric species. However, hydrogen can escape by means of collisions with hot atoms from ionospheric photochemistry, and although the bulk of O and O2 are gravitationally bound, heavy ions have been observed to escape through interaction with the solar wind. Nevertheless, their relative rates of escape, spatial distribution, and composition could not be determined from these previous measurements. Here we report Venus Express measurements showing that the dominant escaping ions are O+, He+ and H+. The escaping ions leave Venus through the plasma sheet (a central portion of the plasma wake) and in a boundary layer of the induced magnetosphere. The escape rate ratios are Q(H+)/Q(O+) = 1.9; Q(He+)/Q(O+) = 0.07. The first of these implies that the escape of H+ and O+, together with the estimated escape of neutral hydrogen and oxygen, currently takes place near the stoichometric ratio corresponding to water.  相似文献   

10.
Ballester GE  Sing DK  Herbert F 《Nature》2007,445(7127):511-514
About ten per cent of the known extrasolar planets are gas giants that orbit very close to their parent stars. The atmospheres of these 'hot Jupiters' are heated by the immense stellar irradiation. In the case of the planet HD 209458b, this energy deposition results in a hydrodynamic state in the upper atmosphere, allowing for sizeable expansion and escape of neutral hydrogen gas. HD 209458b was the first extrasolar planet discovered that transits in front of its parent star. The size of the planet can be measured using the total optical obscuration of the stellar disk during an observed transit, and the structure and composition of the planetary atmosphere can be studied using additional planetary absorption signatures in the stellar spectrum. Here we report the detection of absorption by hot hydrogen in the atmosphere of HD 209458b. Previously, the lower atmosphere and the full extended upper atmosphere of HD 209458b have been observed, whereas here we probe a layer where the escaping gas forms in the upper atmosphere of HD 209458b.  相似文献   

11.
The structure of Venus' middle atmosphere and ionosphere   总被引:1,自引:0,他引:1  
The atmosphere and ionosphere of Venus have been studied in the past by spacecraft with remote sensing or in situ techniques. These early missions, however, have left us with questions about, for example, the atmospheric structure in the transition region from the upper troposphere to the lower mesosphere (50-90 km) and the remarkably variable structure of the ionosphere. Observations become increasingly difficult within and below the global cloud deck (<50 km altitude), where strong absorption greatly limits the available investigative spectrum to a few infrared windows and the radio range. Here we report radio-sounding results from the first Venus Express Radio Science (VeRa) occultation season. We determine the fine structure in temperatures at upper cloud-deck altitudes, detect a distinct day-night temperature difference in the southern middle atmosphere, and track day-to-day changes in Venus' ionosphere.  相似文献   

12.
The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 microm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at approximately 115 km and varies with solar zenith angle over a range of approximately 10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km +/- 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.  相似文献   

13.
 人类已在火星、木卫二及土卫二上发现了大量盐类矿物,木卫三、木卫四也可能有盐类存在,可见盐类在行星普遍存在.盐类研究对于行星科学具有重要意义.首先,盐类光谱研究直接帮助研究者对探测数据进行解译,确定盐类矿物种类,在探测数据不明确的情况下,盐类稳定性质等还可以帮助限定盐类矿物在探测区域出现的可能性;其次,盐类矿物是行星多层圈相互作用的产物,对行星盐类的研究可以获取行星相关过程中的地质历史信息,根据所研究盐类起源的不同,盐类研究有助于理解行星内部的演化、表面水溶液环境、大气成分和结构;此外,盐类起源是生命起源的基础,行星盐类研究是地外生命探索的关键步骤之一.本文综述2008 年至今开展的火星盐类类比研究进展.  相似文献   

14.
The four final rotation states of Venus.   总被引:1,自引:0,他引:1  
A C Correia  J Laskar 《Nature》2001,411(6839):767-770
Venus rotates very slowly on its axis in a retrograde direction, opposite to that of most other bodies in the Solar System. To explain this peculiar observation, it has been generally believed that in the past its rotational axis was itself rotated to 180 degrees as a result of core-mantle friction inside the planet, together with atmospheric tides. But such a change has to assume a high initial obliquity (the angle between the planet's equator and the plane of the orbital motion). Chaotic evolution, however, allows the spin axis to flip for a large set of initial conditions. Here we show that independent of uncertainties in the models, terrestrial planets with dense atmosphere like Venus can evolve into one of only four possible rotation states. Moreover, we find that most initial conditions will drive the planet towards the configuration at present seen at Venus, albeit through two very different evolutionary paths. The first is the generally accepted view whereby the spin axis flips direction. But we have also found that it is possible for Venus to begin with prograde rotation (the same direction as the other planets) yet then develop retrograde rotation while the obliquity goes towards zero: a rotation of the spin axis is not necessary in this case.  相似文献   

15.
South-polar features on Venus similar to those near the north pole   总被引:1,自引:0,他引:1  
Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.  相似文献   

16.
Burrows A 《Nature》2005,433(7023):261-268
Astronomy is at times a science of unexpected discovery. When it is, and if we are lucky, new intellectual territories emerge to challenge our views of the cosmos. The recent indirect detections using high-precision Doppler spectroscopy of more than 100 giant planets orbiting more than 100 nearby stars is an example of such rare serendipity. What has been learned has shaken out preconceptions, for none of the planetary systems discovered so far is like our own. The key to unlocking a planet's chemical, structural, and evolutionary secrets, however, is the direct detection of the planet's light. Because there have been as yet no confirmed detections, a theoretical analysis of such a planet's atmosphere is necessary for guiding our search.  相似文献   

17.
Venus has thick clouds of H2SO4 aerosol particles extending from altitudes of 40 to 60 km. The 60-100 km region (the mesosphere) is a transition region between the 4 day retrograde superrotation at the top of the thick clouds and the solar-antisolar circulation in the thermosphere (above 100 km), which has upwelling over the subsolar point and transport to the nightside. The mesosphere has a light haze of variable optical thickness, with CO, SO2, HCl, HF, H2O and HDO as the most important minor gaseous constituents, but the vertical distribution of the haze and molecules is poorly known because previous descent probes began their measurements at or below 60 km. Here we report the detection of an extensive layer of warm air at altitudes 90-120 km on the night side that we interpret as the result of adiabatic heating during air subsidence. Such a strong temperature inversion was not expected, because the night side of Venus was otherwise so cold that it was named the 'cryosphere' above 100 km. We also measured the mesospheric distributions of HF, HCl, H2O and HDO. HCl is less abundant than reported 40 years ago. HDO/H2O is enhanced by a factor of approximately 2.5 with respect to the lower atmosphere, and there is a general depletion of H2O around 80-90 km for which we have no explanation.  相似文献   

18.
该文给出了包含云和辐射动态反馈的一维气体气候模型,根据Liapumov稳定性理论,以超熵产生作为气候为判据,讨论了云重温度变化率,太阳辐射、地表反照率和大气有效发射率与气候突变的关系,所得结论与实际定性一致。  相似文献   

19.
Dauphas N  Pourmand A 《Nature》2011,473(7348):489-492
Terrestrial planets are thought to have formed through collisions between large planetary embryos of diameter ~1,000-5,000?km. For Earth, the last of these collisions involved an impact by a Mars-size embryo that formed the Moon 50-150?million years (Myr) after the birth of the Solar System. Although model simulations of the growth of terrestrial planets can reproduce the mass and dynamical parameters of the Earth and Venus, they fall short of explaining the small size of Mars. One possibility is that Mars was a planetary embryo that escaped collision and merging with other embryos. To assess this idea, it is crucial to know Mars' accretion timescale, which can be investigated using the (182)Hf-(182)W decay system in shergottite-nakhlite-chassignite meteorites. Nevertheless, this timescale remains poorly constrained owing to a large uncertainty associated with the Hf/W ratio of the Martian mantle and as a result, contradicting timescales have been reported that range between 0 and 15?Myr (refs 6-10). Here we show that Mars accreted very rapidly and reached about half of its present size in only 1.8(+0.9)(-1.0) Myr or less, which is consistent with a stranded planetary embryo origin. We have found a well-defined correlation between the Th/Hf and (176)Hf/(177)Hf ratios in chondrites that reflects remobilization of Lu and Th during parent-body processes. Using this relationship, we estimate the Hf/W ratio in Mars' mantle to be 3.51?±?0.45. This value is much more precise than previous estimates, which ranged between 2.6 and 5.0 (ref. 6), and lifts the large uncertainty that plagued previous estimates of the age of Mars. Our results also demonstrate that Mars grew before dissipation of the nebular gas when ~100-km planetesimals, such as the parent bodies of chondrites, were still being formed. Mars' accretion occurred early enough to allow establishment of a magma ocean powered by decay of (26)Al.  相似文献   

20.
On the basis of previous parameterization schemes, considering both the wave breaking and absorbed at critical level, a parameterization with a continuous spectrum of gravity waves is realized by introducing a momentum flux density function for the wave spectrum, and then the parameterization scheme of the gravity waves is improved. Choosing parameter values of the background atmosphere and waves based on the observations, a more realistic equatorial quasi-biennial oscillation (QBO) driven by the incorporated drag from the planetary and gravity waves can be simulated. The numerical results indicate that the forcing magnitude of the planetary and gravity waves varies with the wind field, and in some phases of the QBO, the contribution of the gravity waves is comparable with that of the planetary waves. After the QBO is steadily formed, its amplitude and period and wind configuration are relevant to the effect of vertical diffusion and the momentum flux distribution with spectrum, however, independent of the initial background wind field. Moreover, for any given nonzero initial background wind, a steady QBO can be finally generated due to the incorporated drag from the planetary and gravity waves. Supported by National Natural Science Foundation of China (Grant Nos. 40731055 and 40774085), the Innovative Research Team Project, Ministry of Education, the Knowledge Innovation Program of the Chinese Academy of Sciences (IAP07315), the China Meteorological Administration (Grant No. GYHY200706013) and the Open Programs of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号