首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7?×?10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4?±?1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.  相似文献   

2.
Ultracold atoms in optical lattices provide a versatile tool with which to investigate fundamental properties of quantum many-body systems. In particular, the high degree of control of experimental parameters has allowed the study of many interesting phenomena, such as quantum phase transitions and quantum spin dynamics. Here we demonstrate how such control can be implemented at the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focused laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line, and observed that our addressing scheme leaves the atoms in the motional ground state. The results should enable studies of entropy transport and the quantum dynamics of spin impurities, the implementation of novel cooling schemes, and the engineering of quantum many-body phases and various quantum information processing applications.  相似文献   

3.
Fujisawa T  Austing DG  Tokura Y  Hirayama Y  Tarucha S 《Nature》2002,419(6904):278-281
The strength of radiative transitions in atoms is governed by selection rules that depend on the occupation of atomic orbitals with electrons. Experiments have shown similar electron occupation of the quantized energy levels in semiconductor quantum dots--often described as artificial atoms. But unlike real atoms, the confinement potential of quantum dots is anisotropic, and the electrons can easily couple with phonons of the material. Here we report electrical pump-and-probe experiments that probe the allowed and 'forbidden' transitions between energy levels under phonon emission in quantum dots with one or two electrons (artificial hydrogen and helium atoms). The forbidden transitions are in fact allowed by higher-order processes where electrons flip their spin. We find that the relaxation time is about 200 micro s for forbidden transitions, 4 to 5 orders of magnitude longer than for allowed transitions. This indicates that the spin degree of freedom is well separated from the orbital degree of freedom, and that the total spin in the quantum dots is an excellent quantum number. This is an encouraging result for potential applications of quantum dots as basic entities for spin-based quantum information storage.  相似文献   

4.
We review our recent theoretical advances in quantum information and many body physics with cold atoms in various external potential, such as harmonic potential, kagome optical lattice, triangular optical lattice, and honeycomb lattice. The many body physics of cold atom in harmonic potential is investigated in the frame of mean-field Gross-Pitaevskii equation. Then the quantum phase transition and strongly correlated effect of cold atoms in triangular optical lattice, and the interacting Dirac fermions on honeycomb lattice, are investigated by using cluster dynamical mean-field theory and continuous time quantum Monte Carlo method. We also study the quantum spin Hall effect in the kagome optical lattice.  相似文献   

5.
A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem-experimental investigations involving comparisons of particles with antiparticles are numerous. Cold atoms and anti-atoms, such as hydrogen and antihydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN) and at Fermilab, but these experiments were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected directly when they escape the trap and annihilate, producing a characteristic signature in an imaging particle detector.  相似文献   

6.
Ultracold atoms trapped by light offer robust quantum coherence and controllability, providing an attractive system for quantum information processing and for the simulation of complex problems in condensed matter physics. Many quantum information processing schemes require the manipulation and deterministic entanglement of individual qubits; this would typically be accomplished using controlled, state-dependent, coherent interactions among qubits. Recent experiments have made progress towards this goal by demonstrating entanglement among an ensemble of atoms confined in an optical lattice. Until now, however, there has been no demonstration of a key operation: controlled entanglement between atoms in isolated pairs. Here we use an optical lattice of double-well potentials to isolate and manipulate arrays of paired (87)Rb atoms, inducing controlled entangling interactions within each pair. Our experiment realizes proposals to use controlled exchange coupling in a system of neutral atoms. Although 87Rb atoms have nearly state-independent interactions, when we force two atoms into the same physical location, the wavefunction exchange symmetry of these identical bosons leads to state-dependent dynamics. We observe repeated interchange of spin between atoms occupying different vibrational levels, with a coherence time of more than ten milliseconds. This observation demonstrates the essential component of a neutral atom quantum SWAP gate (which interchanges the state of two qubits). Its 'half-implementation', the root SWAP gate, is entangling, and together with single-qubit rotations it forms a set of universal gates for quantum computation.  相似文献   

7.
A central goal in condensed matter and modern atomic physics is the exploration of quantum phases of matter--in particular, how the universal characteristics of zero-temperature quantum phase transitions differ from those established for thermal phase transitions at non-zero temperature. Compared to conventional condensed matter systems, atomic gases provide a unique opportunity to explore quantum dynamics far from equilibrium. For example, gaseous spinor Bose-Einstein condensates (whose atoms have non-zero internal angular momentum) are quantum fluids that simultaneously realize superfluidity and magnetism, both of which are associated with symmetry breaking. Here we explore spontaneous symmetry breaking in 87Rb spinor condensates, rapidly quenched across a quantum phase transition to a ferromagnetic state. We observe the formation of spin textures, ferromagnetic domains and domain walls, and demonstrate phase-sensitive in situ detection of spin vortices. The latter are topological defects resulting from the symmetry breaking, containing non-zero spin current but no net mass current.  相似文献   

8.
反物质研究     
讨论了反物质世界,扩充超荷含义和盖尔曼-西岛公式的应用范围,给出全部反夸克量子数特性,描述反物质世界中的相互作用,探究反物质的形成条件和宇宙反物质的存在性,指出有些反物质天体仍然可能存在.而且物质和反物质两者有相同的相互作用力场,类似的原子能级结构和相似光谱,现今的观察方法不能区分天体和反天体.  相似文献   

9.
Bose-Einstein condensation of atomic gases   总被引:2,自引:0,他引:2  
Anglin JR  Ketterle W 《Nature》2002,416(6877):211-218
The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three long-standing goals. First, cooling of neutral atoms into their motional ground state, thus subjecting them to ultimate control, limited only by Heisenberg's uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum state, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of a gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum-degenerate gases has grown, and now includes metastable and fermionic atoms. Condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions.  相似文献   

10.
Sub-poissonian loading of single atoms in a microscopic dipole trap.   总被引:1,自引:0,他引:1  
N Schlosser  G Reymond  I Protsenko  P Grangier 《Nature》2001,411(6841):1024-1027
The ability to manipulate individual atoms, ions or photons allows controlled engineering of the quantum state of small sets of trapped particles; this is necessary to encode and process information at the quantum level. Recent achievements in this direction have used either trapped ions or trapped photons in cavity quantum-electrodynamical systems. A third possibility that has been studied theoretically is to use trapped neutral atoms. Such schemes would benefit greatly from the ability to trap and address individual atoms with high spatial resolution. Here we demonstrate a method for loading and detecting individual atoms in an optical dipole trap of submicrometre size. Because of the extremely small trapping volume, only one atom can be loaded at a time, so that the statistics of the number of atoms in the trap, N, are strongly sub-poissonian (DeltaN2 approximately 0.5N). We present a simple model for describing the observed behaviour, and we discuss the possibilities for trapping and addressing several atoms in separate traps, for applications in quantum information processing.  相似文献   

11.
A Luttinger liquid is an interacting one-dimensional electronic system, quite distinct from the 'conventional' Fermi liquids formed by interacting electrons in two and three dimensions. Some of the most striking properties of Luttinger liquids are revealed in the process of electron tunnelling. For example, as a function of the applied bias voltage or temperature, the tunnelling current exhibits a non-trivial power-law suppression. (There is no such suppression in a conventional Fermi liquid.) Here, using a carbon nanotube connected to resistive leads, we create a system that emulates tunnelling in a Luttinger liquid, by controlling the interaction of the tunnelling electron with its environment. We further replace a single tunnelling barrier with a double-barrier, resonant-level structure and investigate resonant tunnelling between Luttinger liquids. At low temperatures, we observe perfect transparency of the resonant level embedded in the interacting environment, and the width of the resonance tends to zero. We argue that this behaviour results from many-body physics of interacting electrons, and signals the presence of a quantum phase transition. Given that many parameters, including the interaction strength, can be precisely controlled in our samples, this is an attractive model system for studying quantum critical phenomena in general, with wide-reaching implications for understanding quantum phase transitions in more complex systems, such as cold atoms and strongly correlated bulk materials.  相似文献   

12.
Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium (pHe(+)) is a three-body atom consisting of a normal helium nucleus, an electron in its ground state and an antiproton (p) occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and l, such that n?≈?l?+?1?≈?38. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which p(3)He(+) and p(4)He(+) isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-photon transitions of the antiproton of the type (n, l)?→?(n?-?2, l?-?2) at deep-ultraviolet wavelengths (λ = 139.8, 193.0 and 197.0?nm), which partly cancel the Doppler broadening of the laser resonance caused by the thermal motion of the atoms. The resulting narrow spectral lines allowed us to measure three transition frequencies with fractional precisions of 2.3-5 parts in 10(9). By comparing the results with three-body quantum electrodynamics calculations, we derived an antiproton-to-electron mass ratio of 1,836.1526736(23), where the parenthetical error represents one standard deviation. This agrees with the proton-to-electron value known to a similar precision.  相似文献   

13.
Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov's prediction of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics. However, the observation of Efimov quantum states has remained an elusive goal. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied. We also detect a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems. While Feshbach resonances have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter to the world of few-body quantum phenomena.  相似文献   

14.
基于腔量子动力学(QED)系统,从N个原子和M个原子的W态中各取1个原子同时送入真空腔场,利用原子与腔场相互作用实现2个W态融合.当原子与腔场发生共振作用后,探测腔场.结果表明:若有1个光子,则初始的2个W态以一定概率融合为(N+M)个原子W态;若腔场中没有光子,则探测飞出2个原子,若2个原子中有1个原子处于激发态,则初始的2个W态以一定概率融合为(N+M-2)个原子W态;若2个原子均处于基态,则余下的(N-1)个原子W态和(M-1)个原子W态仍可按此方案循环融合.  相似文献   

15.
Mandel O  Greiner M  Widera A  Rom T  Hänsch TW  Bloch I 《Nature》2003,425(6961):937-940
Entanglement lies at the heart of quantum mechanics, and in recent years has been identified as an essential resource for quantum information processing and computation. The experimentally challenging production of highly entangled multi-particle states is therefore important for investigating both fundamental physics and practical applications. Here we report the creation of highly entangled states of neutral atoms trapped in the periodic potential of an optical lattice. Controlled collisions between individual neighbouring atoms are used to realize an array of quantum gates, with massively parallel operation. We observe a coherent entangling-disentangling evolution in the many-body system, depending on the phase shift acquired during the collision between neighbouring atoms. Such dynamics are indicative of highly entangled many-body states; moreover, these are formed in a single operational step, independent of the size of the system.  相似文献   

16.
用于加快量子绝热“慢”过程的量子绝热捷径技术, 已广泛应用于原子、分子和光物理.基于耦合波导的量子光学类比, 利用量子绝热捷径技术设计光学波导的耦合系数与传播常数, 实现快速的光波导分束器件. 通过数值模拟, 并与共振耦合和绝热耦合波导进行比较. 结果表明, 量子绝热捷径技术所设计的光学波导分束器具有长度短、输出稳定性高的优势.  相似文献   

17.
When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum numbers: spin, charge and orbital. The hallmark of one-dimensional physics is a breaking up of the elementary electron into its separate degrees of freedom. The separation of the electron into independent quasi-particles that carry either spin (spinons) or charge (holons) was first observed fifteen years ago. Here we report observation of the separation of the orbital degree of freedom (orbiton) using resonant inelastic X-ray scattering on the one-dimensional Mott insulator Sr2CuO3. We resolve an orbiton separating itself from spinons and propagating through the lattice as a distinct quasi-particle with a substantial dispersion in energy over momentum, of about 0.2 electronvolts, over nearly one Brillouin zone.  相似文献   

18.
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.  相似文献   

19.
应用J-C模型与相互作绘景中的密度算符理论,研究了2个相互纠缠的理想腔体中2个二能级Rydberg原子与2个纠缠耗散腔场单光子共振相互作用过程中的量子退相干,得到了2个二能级原子的退相干因子.通过对数值计算,讨论了耗散系数和原子-光场相互作用耦合系数对原子态的量子相干性的演化特性的影响.结果表明,耗散系数和原子-光场相互作用强度不仅影响原子态的量子相干性的演化的振荡性,而且影响其演化的周期性.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号