首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tight junctions control paracellular permeability. Here, we analyzed the impact of residues in the second extracellular loop (ECL2) of mouse claudin-5 on paracellular permeability. Stable expression of claudin-5wild type in MDCK-II cells—but not that of mutants R145A, Y148A, Y158A or E159Q—increased transepithelial electrical resistance and decreased fluorescein permeation. Expression of claudin-5Y148A, Y158A or E159Q enhanced permeability of FITC-dextran10 kDa, which was unchanged in cells expressing claudin-5wild type or claudin-5R145A. In contrast, targeting to tight junctions, strand morphology and tight junction assembly were unchanged. It is concluded that R145 is unessential for trans-interaction of claudin-5, but necessary for tightening against small solutes and ions. The highly conserved residues Y148, Y158 and E159 in ECL2 of claudin-5 contribute to homo- and/or heterophilic trans-interaction between classic claudins and thereby tighten the paracellular space against ions, small and large molecules. These results provide novel insights into the molecular function of tight junctions.  相似文献   

2.
The molecular architecture of tight junctions has been a subject of extensive studies that have shown tight junctions to be composed of many peripheral and integral membrane proteins. Claudins have been considered the main tight junction-forming proteins; however, the role they play in a series of pathophysiological events, including human carcinoma development, is only now beginning to be understood. Increasing evidence from in vitro and in vivo studies have identified the influence of claudins on tight junction structure and function, although claudins also participate in cellular contexts other than tight junctions. The aim of this review is to summarize and discuss the conceptual framework concerning claudins, focusing on the involvement of these proteins in epithelial cell polarity establishment, paracellular transport control, signal transduction and tumorigenesis. Received 5 July 2006; received after revision 29 August 2006; accepted 29 September 2006  相似文献   

3.
Sealing of the paracellular cleft by tight junctions is of central importance for epithelia and endothelia to function as efficient barriers between the extracellular space and the inner milieu. Occludin and claudins represent the major tight junction components involved in establishing this barrier function. A special situation emerges at sites where three cells join together. Tricellulin, a recently identified tetraspan protein concentrated at tricellular contacts, was reported to organize tricellular as well as bicellular tight junctions. Here we show that in MDCK cells, the tricellulin C-terminus is important for the basolateral translocation of tricellulin, whereas the N-terminal domain appears to be involved in directing tricellulin to tricellular contacts. In this respect, identification of homomeric tricellulin-tricellulin and of heteromeric tricellulin-occludin complexes extends a previously published model and suggests that tricellulin and occludin are transported together to the edges of elongating bicellular junctions and get separated when tricellular contacts are formed.  相似文献   

4.
Paracellular barrier properties of tissues are mainly determined by the composition of claudin heteropolymers. To analyze the molecular organization of tight junctions (TJ), we investigated the ability of claudins (Cld) to form homo- and heteromers. Cld1, -2, -3, -5, and -12 expressed in cerebral barriers were investigated. TJ-strands were reconstituted by claudin-transfection of HEK293-cells. cis-Interactions and/or spatial proximity were analyzed by fluorescence resonance energy transfer inside and outside of strands and ranked: Cld5/Cld5?>?Cld5/Cld1?>?Cld3/Cld1?>?Cld3/Cld3?>?Cld3/Cld5, no Cld3/Cld2. Classic Cld1, -3, and -5 but not non-classic Cld12 showed homophilic trans-interaction. Freeze-fracture electron microscopy revealed that, in contrast to classic claudins, YFP-tagged Cld12 does not form homopolymers. Heterophilic trans-interactions were analyzed in cocultures of differently monotransfected cells. trans-Interaction of Cld3/Cld5 was less pronounced than that of Cld3/Cld1, Cld5/Cld1, Cld5/Cld5 or Cld3/Cld3. The barrier function of reconstituted TJ-strands was demonstrated by a novel imaging assay. A model of the molecular organization of TJ was generated.  相似文献   

5.
Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported. Received 6 October 2005; received after revision 14 December 2005; accepted 27 December 2005 †These authors contributed equally to this work.  相似文献   

6.
Tight junctions (TJs) create a paracellular permeability barrier. Although reactive oxygen species have been implicated as mediators of inflammation in inflammatory bowel diseases, their influence on the function of colonic epithelial TJs remains unknown. Oxidative stress-mediated colonic epithelial permeability was significantly attenuated by a p38 mitogen-activated protein (MAP) kinase inhibitor, SB203580. Although the amount of TJ proteins was not altered, hydrogen peroxide (H2O2) changed the localization of claudin-4 protein from an NP-40 insoluble fraction to a soluble fraction and from an apical TJ to lateral membrane. The p38 MAP kinase inactivator Wip1 significantly attenuated phosphorylation of p38 MAP kinase, and oxidative stress mediated permeability. H2O2-induced changes in claudin-4 localization were abolished by SB203580 pretreatment as well as Wip1-expressing adenovirus infection. This is the first study to demonstrate that exogenous Wip1 functions to protect oxidative stress-mediated colonic mucosal permeability and that H2O2-induced claudin-4 dislocalization is abolished by Wip1. Received 14 June 2007; received after revision 8 October 2007; accepted 8 October 2007  相似文献   

7.
8.
Transmembrane ion channels play a crucial role in the existence of all living organisms. They partition the exterior from the interior of the cell, maintain the proper ionic gradient across the cell membrane and facilitate signaling between cells. To perform these functions, ion channels must be highly selective, allowing some types of ions to pass while blocking the passage of others. Here we review a number of studies that have helped to elucidate the mechanisms by which ion channels discriminate between ions of differing charge, focusing on four channel families as examples: gramicidin, ClC chloride, voltage-gated calcium and potassium channels. The recent availability of high-resolution structural data has meant that the specific inter-atomic interactions responsible for valence selectivity can be pinpointed. Not surprisingly, electrostatic considerations have been shown to play an important role in ion specificity, although many details of the origins of this discrimination remain to be determined. Received 4 September 2005; received after revision 17 October 2005; accepted 2 November 2005  相似文献   

9.
10.
Cell adhesion molecules (CAMs) have been implicated in the control of a wide variety of cellular processes, such as cell adhesion, polarization, survival, movement, and proliferation. Nectins have emerged as immunoglobulin-like CAMs that participate in calcium-independent cell-cell adhesion by homophilic and heterophilic trans-interactions with nectins and nectin-like molecules. Nectin-based cell-cell adhesion exerts its function independently or in cooperation with other CAMs including cadherins and is essential for the formation of intercellular junctions, including adherens junctions, tight junctions, and puncta adherentia junctions. Nectins cis-interact with integrin αvβ3 and platelet-derived growth factor receptor and facilitate their signals to regulate the formation and integrity of intercellular junctions and cell survival. Nectins intracellularly associate with peripheral membrane proteins, including afadin and Par-3. This review focuses on recent progress in understanding the interactions of nectins with other transmembrane and peripheral membrane proteins to exert pleiotropic functions. Received 27 June 2007; received after revision 14 August 2007; accepted 12 September 2007  相似文献   

11.
Dni1 and Dni2 facilitate cell fusion during mating. Here, we show that these proteins are interdependent for their localization in a plasma membrane subdomain, which we have termed the mating fusion domain. Dni1 compartmentation in the domain is required for cell fusion. The contribution of actin, sterol-dependent membrane organization, and Dni2 to this compartmentation was analysed, and the results showed that Dni2 plays the most relevant role in the process. In turn, the Dni2 exit from the endoplasmic reticulum depends on Dni1. These proteins share the presence of a cysteine motif in their first extracellular loop related to the claudin GLWxxC(8–10 aa)C signature motif. Structure–function analyses show that mutating each Dni1 conserved cysteine has mild effects, and that only simultaneous elimination of several cysteines leads to a mating defect. On the contrary, eliminating each single cysteine and the C-terminal tail in Dni2 abrogates Dni1 compartmentation and cell fusion. Sequence alignments show that claudin trans-membrane helixes bear small-XXX-small motifs at conserved positions. The fourth Dni2 trans-membrane helix tends to form homo-oligomers in Escherichia plasma membrane, and two concatenated small-XXX-small motifs are required for efficient oligomerization and for Dni2 export from the yeast endoplasmic reticulum. Together, our results strongly suggest that Dni2 is an ancient claudin that blocks Dni1 diffusion from the intercellular region where two plasma membranes are in close proximity, and that this function is required for Dni1 to facilitate cell fusion.  相似文献   

12.
Summary the structure and function of blood capillaries, as related to permeability, depends on tight, close and (in injured vessels) open junctional regions, small vesicles, vacuoles (in injured vessels) and fenestrae. The basement membrane presents a hindrance to the larger macromolecules, at high flow rates, but not to small molecules. The connective tissue channels are probably the paths by which macromolecules, and most of the small ones, pass from the arterial-limbs to the venous ones, and to the lymphatics. In some regions these channels are grouped in special systems: the prelymphatics. The initial lymphatics take up material via open junctions, which close during tissue-compression. The collecting lymphatics retain the lymph because they do not have open junctions.In the close junctional regions the motive force for water flow is the result of Starling's forces; diffusion is very important for other small molecules. The small vesicles transport macromolecules slowly by Brownian motion, as may the vacuoles, but possibly these latter are moved actively.There is much evidence that colloids can develop high effective osmotic pressures even across pores much larger than their molecules, and that proteins can be dragged up a concentration gradient by the resultant fluid flow. On the basis of this, hypotheses have been developed about the functioning of venous-limb fenestrae and the initial lymphatics, for which there is much theoretical, in vitro, and in vivo evidence. Thus, in fenestrae and regions there is held to be a large local circulation through the tissues, of which a quantitatively small, but qualitatively vital, part goes to the lymphatics. Material is considered usually to enter these latter because of the relative concentration of the lymph.It is becoming increasingly evident that in the study of the microvasculature, as with other systems, there is much to be gained by quantifying fine structural observations and by combining and contrasting this data, via physical laws, with that obtained by other methods where the characteristics of whole organs and regions are studied. Thus one can obtain interrelated information, which is not possible by either method alone, and which gives us a vital, comprehensive, perspective of the ways in which whole systems function, and how different systems interact. In this paper I shall show how this approach has yielded much that is new about the functioning of different kinds of blood capillaries, of the tissue channels, of the whole lymphatic system, and of the ways they affect each other.Most of the author's work reported here was financed by the Australian Research Grants Committee.  相似文献   

13.
G E Korte  D Hirsch 《Experientia》1986,42(7):812-815
In rats with retinopathies induced by excess fluorescent light or injections of urethane, the retinal pigment epithelium (RPE) undergoes focal hyperplasia. Neither intravascularly injected horseradish peroxidase or lanthanum nitrate penetrated the sensory retina at these hyperplastic sites. Electron microscopy revealed that this was due to the persistence of intact tight junctions among a single layer of hyperplastic cells facing the sensory retina. These junctions prevented intraocularly injected microperoxidase from passing as well. Cells within the hyperplastic foci were connected only by adherent junctions that presented no permeability barrier.  相似文献   

14.
Trefoil factors   总被引:6,自引:0,他引:6  
Rapid repair of mucous epithelia is essential for preventing inflammation which is a critical component of cancer progression. 'Restitution' is an early repair process which can begin within minutes and is achieved via the migration of neighbouring cells into the wounded area. Mucosal restitution is a multistep process which requires continuous blood flow and includes at least (i) the reduction of cell-cell contacts and a shift in the cell shape towards a migratory phenotype (characteristics of the epithelial-mesenchymal transition), (ii) migration of cells, (iii) repolarization and formation of tight junctions (morphological restitution) and (iv) restoration of barrier function (transmucosal epithelial resistance, functional restitution). Secretory TFF (trefoil factor family) peptides TFF1, TFF2 and TFF3 are well known for their potent protective and healing effects after mucosal damage (function as 'luminal surveillance peptides'). Here, the contributions of the TFFs during the different steps of mucosal restitution are discussed, i. e. the modulation of cell-cell contacts, their motogenic activity and synergy with epidermal growth factor, their anti-apoptotic and pro-angiogenic effects. Special emphasis has been given to discussion of the various signal transduction networks triggered by TFFs. It is becoming increasingly clear that these pathways differ depending on the respective TFF.  相似文献   

15.
The formation of intracellular ice (IIF), usually a lethal event to be avoided when cryopreserving cells, should, however, be enforced during the cryosurgical destruction of tumour cells. IIF has been investigated so far only in single cells in suspension. Because cells in tissues cannot be successfully cryopreserved, in contrast to single cells in suspension, the mechanism of IIF in tissues may depend on factors that facilitate IIF. We studied IIF in cell strands from salivary glands, which represent a simple form of a tissue. Their cells are connected by channels responsible for intercellular communication. A substantial fraction of cell dehydration during freezing occurs before cells are encapsulated by ice, and the degree of this pre-ice-front shrinkage appears to influence IIF. In strands with coupled cells IIF spread from one cell to adjacent cells in a sequential manner with short delays (200–300 ms), suggesting cell-to-cell propagation via intercellular channels. In strands pretreated with decoupling agents (dinitrophenol, heptanol), sequential IIF was absent. Instead, formation of ice was random, with longer and variable delays between consecutive darkenings indicating IIF. Results suggest that the mechanism of IIF spread, and consequently the degree of cryodamage in tissue, can be influenced by the presence of intercellular channels (gap junctions).  相似文献   

16.
The vasculature is one of the most dynamic tissues that encounter numerous mechanical cues derived from pulsatile blood flow, blood pressure, activity of smooth muscle cells in the vessel wall, and transmigration of immune cells. The inner layer of blood and lymphatic vessels is covered by the endothelium, a monolayer of cells which separates blood from tissue, an important function that it fulfills even under the dynamic circumstances of the vascular microenvironment. In addition, remodeling of the endothelial barrier during angiogenesis and trafficking of immune cells is achieved by specific modulation of cell–cell adhesion structures between the endothelial cells. In recent years, there have been many new discoveries in the field of cellular mechanotransduction which controls the formation and destabilization of the vascular barrier. Force-induced adaptation at endothelial cell–cell adhesion structures is a crucial node in these processes that challenge the vascular barrier. One of the key examples of a force-induced molecular event is the recruitment of vinculin to the VE-cadherin complex upon pulling forces at cell–cell junctions. Here, we highlight recent advances in the current understanding of mechanotransduction responses at, and derived from, endothelial cell–cell junctions. We further discuss their importance for vascular barrier function and remodeling in development, inflammation, and vascular disease.  相似文献   

17.
18.
Gap junctions consist of arrays of intercellular channels composed of integral membrane proteins called connexin in vertebrates. Gap junction channels regulate the passage of ions and biological molecules between adjacent cells and, therefore, are critically important in many biological activities, including development, differentiation, neural activity, and immune response. Mutations in connexin genes are associated with several human diseases, such as neurodegenerative disease, skin disease, deafness, and developmental abnormalities. The activity of gap junction channels is regulated by the membrane voltage, intracellular microenvironment, interaction with other proteins, and phosphorylation. Each connexin channel has its own property for conductance and molecular permeability. A number of studies have tried to reveal the molecular architecture of the channel pore that should confer the connexin-specific permeability/selectivity properties and molecular basis for the gating and regulation. In this review, we give an overview of structural studies and describe the structural and functional relationship of gap junction channels.  相似文献   

19.
Insulin secretion is finely tuned to the requirements of tissues by tight coupling to prevailing blood glucose levels. The normal regulation of insulin secretion is coupled to glucose metabolism in the pancreatic B cell, a major but not exclusive signal for secretion being closure of K+ATP (adenosine triphosphate)-dependent channels in the cell membrane through an increase in cytosolic ATP/adenosine diphosphate. Insulin secretion in type 2 diabetes is abnormal in several respects due to genetic causes but also due to the metabolic environment of the pancreatic B cells. This environment may be particularly important for the deterioration of insulin secretion which occurs with increasing duration of diabetes. Factors in the environment with potential importance include overstimulation, a negative effect of hyperglycemia per se (‘glucotoxicity’) as well as adverse effects of elevated fatty acids (‘lipotoxicity’). Elucidating the mechanisms behind these factors as well as their clinical importance will pave the way for treatment which could preserve B-cell function in type 2 diabetic patients. Received 4 October 1999; received after revision 1 November 1999; accepted 3 December 1999  相似文献   

20.
Summary In rats with retinopathies induced by excess fluorescent light or injections of urethane, the retinal pigment epithelium (RPE) undergoes focal hyperplasia. Neither intravascularly injected horseradish peroxidase or lanthanum nitrate penetrated the sensory retina at these hyperplastic sites. Electron microscopy revealed that this was due to the persistence of intact, tight junctions among a single layer of hyperplastic cells facing the sensory retina. These junctions prevented intraocularly injected microperoxidase from passing as well. Cells within the hyperplastic foci were connected only by adherent junctions that presented no permeability barrier.Supported by a grant from the National Eye Institute to Dr R. Bellhorn, whose support is greatly appreciated, and an unrestricted grant and a Research Manpower Award from Research to Prevent Blindness, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号