首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reburial of fossil organic carbon in marine sediments   总被引:4,自引:0,他引:4  
Dickens AF  Gélinas Y  Masiello CA  Wakeham S  Hedges JI 《Nature》2004,427(6972):336-339
Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. However, little is understood about the environmental roles, transport and distribution of black carbon. Here we apply isotopic analyses to graphitic black carbon samples isolated from pre-industrial marine and terrestrial sediments. We find that this material is terrestrially derived and almost entirely depleted of radiocarbon, suggesting that it is graphite weathered from rocks, rather than a combustion product. The widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments. It could be responsible for biasing radiocarbon dating of sedimentary organic carbon, and also reveals a closed loop in the carbon cycle. Depending on its susceptibility to oxidation, this recycled carbon may be locked away from the biologically mediated carbon cycle for many geologic cycles.  相似文献   

2.
Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14?kilometres thick and an estimated 21,000 petagrams (1?Pg equals 10(15)?g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300?metres in West Antarctica and 700?metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.  相似文献   

3.
对扬子地区上奥陶统五峰组和下志留统龙马溪组烃源岩中总铁、高活性铁和有机碳含量等进行分析。研究结果表明:有机碳含量为0.23%~9.32%,平均值为3.62%;总铁含量普遍较高,为0.88%~5.03%,平均含量为2.47%;高活性铁含量为0.19%~1.56%,平均含量仅为0.91%;总铁丰度与有机碳含量变化差异较大,相关系数为0.29;高活性铁丰度与有机碳含量变化相关性十分显著,相关系数达0.76;总铁丰度并不是指示古生产力的理想指标,但高活性铁丰度可以作为指示古生产力变化的1个替代性指标。  相似文献   

4.
Wortmann UG  Chernyavsky BM 《Nature》2007,446(7136):654-656
The global carbon and sulphur cycles are central to our understanding of the Earth's history, because changes in the partitioning between the reduced and oxidized reservoirs of these elements are the primary control on atmospheric oxygen concentrations. In modern marine sediments, the burial rates of reduced carbon and sulphur are positively coupled, but high-resolution isotope records indicate that these rates were inversely related during the Early Cretaceous period. This inverse relationship is difficult to reconcile with our understanding of the processes that control organic matter remineralization and pyrite burial. Here we show that the inverse correlation can be explained by the deposition of evaporites during the opening of the South Atlantic Ocean basin. Evaporite deposition can alter the chemical composition of sea water, which can in turn affect the ability of sulphate-reducing bacteria to remineralize organic matter and mediate pyrite burial. We use a reaction-transport model to quantify these effects, and the resulting changes in the burial rates of carbon and sulphur, during the Early Cretaceous period. Our results indicate that deposition of the South Atlantic evaporites removed enough sulphate from the ocean temporarily to reduce biologically mediated pyrite burial and organic matter remineralization by up to fifty per cent, thus explaining the inverse relationship between the burial rates of reduced carbon and sulphur during this interval. Furthermore, our findings suggest that the effect of changing seawater sulphate concentrations on the marine subsurface biosphere may be the key to understanding other large-scale perturbations of the global carbon and sulphur cycles.  相似文献   

5.
Galy V  France-Lanord C  Beyssac O  Faure P  Kudrass H  Palhol F 《Nature》2007,450(7168):407-410
Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales.  相似文献   

6.
The evolution of the marine phosphate reservoir   总被引:3,自引:0,他引:3  
Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ~750 to ~635?Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.  相似文献   

7.
Hedges JI  Baldock JA  Gélinas Y  Lee C  Peterson M  Wakeham SG 《Nature》2001,409(6822):801-804
The sinking of particulate organic matter from ocean surface waters transports carbon to the ocean interior, where almost all is then recycled. The unrecycled fraction of this organic matter can become buried in ocean sediments, thus sequestering carbon and so influencing atmospheric carbon dioxide concentrations. The processes controlling the extensive biodegradation of sinking particles remain unclear, partly because of the difficulty in resolving the composition of the residual organic matter at depth with existing chromatographic techniques. Here, using solid-state 13C NMR spectroscopy, we characterize the chemical structure of organic carbon in both surface plankton and sinking particulate matter from the Pacific Ocean and the Arabian Sea. We found that minimal changes occur in bulk organic composition, despite extensive (>98%) biodegradation, and that amino-acid-like material predominates throughout the water column in both regions. The compositional similarity between phytoplankton biomass and the small remnant of organic matter reaching the ocean interior indicates that the formation of unusual biochemicals, either by chemical recombination or microbial biosynthesis, is not the main process controlling the preservation of particulate organic carbon within the water column at these two sites. We suggest instead that organic matter might be protected from degradation by the inorganic matrix of sinking particles.  相似文献   

8.
Old-growth forests as global carbon sinks   总被引:15,自引:0,他引:15  
Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.  相似文献   

9.
Physical protection is one of the important ways to stabilize organic carbon in soils. In order to understand the role of soils as a carbon sink or source in global climatic change and carbon cycles and properly manage soils as a carbon sink, we ought to know how many organic carbon (OC) in a given soil could be protected. By a density fractionation approach and ultrasonic technique, each soils ample was divided into three fractions: free light fraction (free-LF), occluded fraction (occluded-LF) and heavy fraction (HF). The obtained fractions were analyzed for total OC content, carbohydrate content and recalcitrant OC content. The results showed: ( i ) In the whole soil profile, dominance of OC consistently decreased in the following order: HF, free-LF, occluded-LF. This suggested that OC in soils were mostly protected. From 0---10 to 60---80 cm horizons, the OC in free-LF decreased from 25.27% to 3.72%, while OC in HF they were increased from 72.57% to 95.39%. The OC in occluded-LF was between 2.16% and 0.89%. (ii) Organic carbon recalcitrance in free-LF was similar to that in HF, and was even higher than that in HF below the surface horizon. This suggested that free-LF was not always the most fresh and non-decomposed fraction. OM quality of HF was higher than that of free-LF in the surface 10 cm below, namely the protected OM had higher quality than free OM in these horizons.  相似文献   

10.
Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40?parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles. So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (refs 8, 9) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles, providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.  相似文献   

11.
Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode   总被引:2,自引:0,他引:2  
Turgeon SC  Creaser RA 《Nature》2008,454(7202):323-326
Oceanic anoxic events (OAEs) were episodes of widespread marine anoxia during which large amounts of organic carbon were buried on the ocean floor under oxygen-deficient bottom waters. OAE2, occurring at the Cenomanian/Turonian boundary (about 93.5 Myr ago), is the most widespread and best defined OAE of the mid-Cretaceous. Although the enhanced burial of organic matter can be explained either through increased primary productivity or enhanced preservation scenarios, the actual trigger mechanism, corresponding closely to the onset of these episodes of increased carbon sequestration, has not been clearly identified. It has been postulated that large-scale magmatic activity initially triggered OAE2 (refs 4, 5), but a direct proxy of magmatism preserved in the sedimentary record coinciding closely with the onset of OAE2 has not yet been found. Here we report seawater osmium isotope ratios in organic-rich sediments from two distant sites. We find that at both study sites the marine osmium isotope record changes abruptly just at or before the onset of OAE2. Using a simple two-component mixing equation, we calculate that over 97 per cent of the total osmium content in contemporaneous seawater at both sites is magmatic in origin, a approximately 30-50-fold increase relative to pre-OAE conditions. Furthermore, the magmatic osmium isotope signal appears slightly before the OAE2-as indicated by carbon isotope ratios-suggesting a time-lag of up to approximately 23 kyr between magmatism and the onset of significant organic carbon burial, which may reflect the reaction time of the global ocean system. Our marine osmium isotope data are indicative of a widespread magmatic pulse at the onset of OAE2, which may have triggered the subsequent deposition of large amounts of organic matter.  相似文献   

12.
Fang C  Smith P  Moncrieff JB  Smith JU 《Nature》2005,433(7021):57-59
Our understanding of the relationship between the decomposition of soil organic matter (SOM) and soil temperature affects our predictions of the impact of climate change on soil-stored carbon. One current opinion is that the decomposition of soil labile carbon is sensitive to temperature variation whereas resistant components are insensitive. The resistant carbon or organic matter in mineral soil is then assumed to be unresponsive to global warming. But the global pattern and magnitude of the predicted future soil carbon stock will mainly rely on the temperature sensitivity of these resistant carbon pools. To investigate this sensitivity, we have incubated soils under changing temperature. Here we report that SOM decomposition or soil basal respiration rate was significantly affected by changes in SOM components associated with soil depth, sampling method and incubation time. We find, however, that the temperature sensitivity for SOM decomposition was not affected, suggesting that the temperature sensitivity for resistant organic matter pools does not differ significantly from that of labile pools, and that both types of SOM will therefore respond similarly to global warming.  相似文献   

13.
The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57?±?2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44?±?10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66?±?16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.  相似文献   

14.
'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago). The most extreme hyperthermal was the ~170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56?Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40?kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.  相似文献   

15.
黑碳对沉积物和土壤中乙草胺吸附作用   总被引:1,自引:0,他引:1  
黑碳是自然界普遍存在的物质,它对持久性污染物的迁移转化有重要影响.研究了沉积物和土壤中的黑碳在农药乙草胺吸附行为中的作用.结果表明:乙草胺在黑碳上的初始吸附符合一级动力学模型.在黑碳与有机碳相对含量较低(fBC/fOC=0.02~0.09)时,非黑碳的有机碳对吸附起主要作用.在黑碳与有机碳的相对含量较高(0.30~0.61)时,黑碳对吸附起主导作用,黑碳相对含量越高,对KOC影响越大.同时,建立了乙草胺吸附体系中KOC与fBC之间的关系模型用于预测不同黑碳含量的天然吸附剂对乙草胺的吸附能力.  相似文献   

16.
Respiration in the open ocean   总被引:11,自引:0,他引:11  
del Giorgio PA  Duarte CM 《Nature》2002,420(6914):379-384
A key question when trying to understand the global carbon cycle is whether the oceans are net sources or sinks of carbon. This will depend on the production of organic matter relative to the decomposition due to biological respiration. Estimates of respiration are available for the top layers, the mesopelagic layer, and the abyssal waters and sediments of various ocean regions. Although the total open ocean respiration is uncertain, it is probably substantially greater than most current estimates of particulate organic matter production. Nevertheless, whether the biota act as a net source or sink of carbon remains an open question.  相似文献   

17.
Occurrence of magnetic bacteria in soil   总被引:17,自引:0,他引:17  
J W Fassbinder  H Stanjek  H Vali 《Nature》1990,343(6254):161-163
Enrichment of the ferrimagnetic minerals magnetite and maghemite is frequently observed in the top layer of soil horizons. Although both inorganic and organic processes are known to produce magnetite, magnetite in soils has been ascribed to an inorganic origin. We report here the discovery of living magnetic bacteria, similar to those found in salt- and fresh-water sediments, in the A horizon of a well developed soil profile in a typical meadow environment in southern Bavaria. The bacteria were detected in fresh samples using an optical microscope equipped with a rotating magnetic field and a volumetrically calibrated depression slide, permitting accurate counts of the volume density of the organisms. We suggest that magnetic bacteria and their magnetofossils can contribute to the magnetic properties of soils.  相似文献   

18.
A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (approximately 10,000 yr) input of isotopically depleted carbon. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the V?ring and M?re basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane--transported to the ocean or atmosphere through the vent complexes--close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (approximately 250 million years ago) and the Karoo Igneous Province (approximately 183 million years ago).  相似文献   

19.
Circuits based on organic semiconductors are being actively explored for flexible, transparent and low-cost electronic applications. But to realize such applications, the charge carrier mobilities of solution-processed organic semiconductors must be improved. For inorganic semiconductors, a general method of increasing charge carrier mobility is to introduce strain within the crystal lattice. Here we describe a solution-processing technique for organic semiconductors in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules. For organic semiconductors, the spacing between cofacially stacked, conjugated backbones (the π-π stacking distance) greatly influences electron orbital overlap and therefore mobility. Using our method to incrementally introduce lattice strain, we alter the π-π stacking distance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) from 3.33?? to 3.08??. We believe that 3.08?? is the shortest π-π stacking distance that has been achieved in an organic semiconductor crystal lattice (although a π-π distance of 3.04?? has been achieved through intramolecular bonding). The positive charge carrier (hole) mobility in TIPS-pentacene transistors increased from 0.8?cm(2)?V(-1)?s(-1) for unstrained films to a high mobility of 4.6?cm(2)?V(-1)?s(-1) for a strained film. Using solution processing to modify molecular packing through lattice strain should aid the development of high-performance, low-cost organic semiconducting devices.  相似文献   

20.
Terrestrial ecosystems in the humid tropics play a potentially important but presently ambiguous role in the global carbon cycle. Whereas global estimates of atmospheric CO2 exchange indicate that the tropics are near equilibrium or are a source with respect to carbon, ground-based estimates indicate that the amount of carbon that is being absorbed by mature rainforests is similar to or greater than that being released by tropical deforestation (about 1.6 Gt C yr-1). Estimates of the magnitude of carbon sequestration are uncertain, however, depending on whether they are derived from measurements of gas fluxes above forests or of biomass accumulation in vegetation and soils. It is also possible that methodological errors may overestimate rates of carbon uptake or that other loss processes have yet to be identified. Here we demonstrate that outgassing (evasion) of CO2 from rivers and wetlands of the central Amazon basin constitutes an important carbon loss process, equal to 1.2 +/- 0.3 Mg C ha-1 yr-1. This carbon probably originates from organic matter transported from upland and flooded forests, which is then respired and outgassed downstream. Extrapolated across the entire basin, this flux-at 0.5 Gt C yr-1-is an order of magnitude greater than fluvial export of organic carbon to the ocean. From these findings, we suggest that the overall carbon budget of rainforests, summed across terrestrial and aquatic environments, appears closer to being in balance than would be inferred from studies of uplands alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号