首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
一种基于分布式数据库的全局频繁项目集更新算法   总被引:4,自引:0,他引:4  
在算法FMAGF的基础上,提出了一种基于分布式数据库的全局频繁项目集更新算法-UAGFI,该算法主要考虑最小支持度发生变化时全局频繁项目集的更新情况。UAGFI在最坏的情况下仅须扫描各局部数据库一遍,并利用已挖掘的结果,可避免传送某些原全局频繁项目对应的条件频繁模式树,从而降低网络通讯代价,实验结果表明,UAGFI算法是有效可行的。  相似文献   

6.
7.
8.
Kaiser D 《Nature》2011,472(7341):30-31
  相似文献   

9.
Wadman M 《Nature》2008,451(7182):1035
  相似文献   

10.
Norman Ce 《Nature》1974,250(5464):278-280
  相似文献   

11.
在分析Brands的受限盲签名方案的基础上提出了一个改进的电子现金支付新方案,基于此构建了一个不带“观察器”的简约高效电子现金方案,详细描述了离线电子现金支付方案作提取、支付和存储三个协议.分析了新方案的效率和安全性,与Brands的电子现金协议相比,在不降低安全他的前提下提高了处理效率、增加了灵活性,尤其适用于因持网上的小额支付.  相似文献   

12.
13.
14.
15.
Raf-1 protein kinase is required for growth of induced NIH/3T3 cells   总被引:76,自引:0,他引:76  
W Kolch  G Heidecker  P Lloyd  U R Rapp 《Nature》1991,349(6308):426-428
Many growth factors regulate the cytoplasmic Raf-1 protein kinase, consistent with its having a central role in transduction of growth signals. The kinase is ubiquitously expressed and can promote proliferation, presumably in a manner dependent on growth-factor receptors and membrane-associated oncogenes. We have now examined the dependence of serum- and TPA (12-O-tetradecanoylphorbol-13-acetate)-regulated NIH/3T3 cell growth on RAF-1 kinase to determine whether Raf-1 is essential for receptor signalling. We inhibited Raf-1 function by expressing c-raf-1 antisense RNA or kinase-defective c-raf-1 mutants. Antisense RNA for c-raf-1 interferes with proliferation of normal NIH/3T3 cells and reverts raf-transformed cells. In revertant cells, DNA replication induced by serum or TPA was eliminated or reduced proportionately to the reduction in Raf protein levels. Expression of a kinase-defective Raf-1 mutant (craf301) or a regulatory domain fragment (HCR) inhibited serum-induced NIH/3T3-cell proliferation and raf transformation even more efficiently. Inhibition by antisense RNA or craf301 blocked proliferation and transformation by Ki- and Ha-ras oncogenes. We conclude that raf functions as an essential signal transducer downstream of serum growth factor receptors, protein kinase C and ras.  相似文献   

16.
17.
18.
Sadqi M  Fushman D  Muñoz V 《Nature》2006,442(7100):317-321
Protein folding is an inherently complex process involving coordination of the intricate networks of weak interactions that stabilize native three-dimensional structures. In the conventional paradigm, simple protein structures are assumed to fold in an all-or-none process that is inaccessible to experiment. Existing experimental methods therefore probe folding mechanisms indirectly. A widely used approach interprets changes in protein stability and/or folding kinetics, induced by engineered mutations, in terms of the structure of the native protein. In addition to limitations in connecting energetics with structure, mutational methods have significant experimental uncertainties and are unable to map complex networks of interactions. In contrast, analytical theory predicts small barriers to folding and the possibility of downhill folding. These theoretical predictions have been confirmed experimentally in recent years, including the observation of global downhill folding. However, a key remaining question is whether downhill folding can indeed lead to the high-resolution analysis of protein folding processes. Here we show, with the use of nuclear magnetic resonance (NMR), that the downhill protein BBL from Escherichia coli unfolds atom by atom starting from a defined three-dimensional structure. Thermal unfolding data on 158 backbone and side-chain protons out of a total of 204 provide a detailed view of the structural events during folding. This view confirms the statistical nature of folding, and exposes the interplay between hydrogen bonding, hydrophobic forces, backbone conformation and side-chain entropy. From the data we also obtain a map of the interaction network in this protein, which reveals the source of folding cooperativity. Our approach can be extended to other proteins with marginal barriers (less than 3RT), providing a new tool for the study of protein folding.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号