首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
颗粒增强不锈钢基复合材料冲蚀磨损性能研究   总被引:2,自引:0,他引:2  
在MMG-200高温氧化-冲刷腐蚀磨损试验机上,考察了Al  相似文献   

2.
对0.3 mm厚Al2O3颗粒增强铝基复合材料薄板进行了储能点焊连接研究试验。发现其微型点焊接头由熔核区、热影响区和熔核向热影响区过渡的熔合区(线)组成。由于储能焊极短的焊接时间,大的冷却速率达到106 K/s,使得熔核组织显著细化,具有快速凝固特征。熔核中增强相Al2O3颗粒发生偏聚现象,在熔核边缘区域出现了气孔缺陷。当焊接电容C=6600μF、电压U=80 V、电极压力F=18 N时,获得较高力学性能的焊接接头。  相似文献   

3.
内氧化工艺对Al2O3/Cu复合材料中Al2O3颗粒分布的影响   总被引:1,自引:0,他引:1  
采用压块加入法和分别加入法两种内氧化工艺,将CuO和Al粉末加入到Ar气保护的铜液中制备Al2O3/Cu复合材料,在光学显微镜、扫描电镜及X射线衍射仪上观察分析了Al2O3颗粒的数量,分布及材料的相组成。结果表明,压块加入法生成的Al2O3颗于枝晶状分布,最体保温时间为30-45min。分别加入法生成的Al2O3颗粒呈弥散状分布,最佳保温时间为45-60min。  相似文献   

4.
针对湿法磷酸工况 ,设计了不锈钢基体的化学成分 ;在Al2 O3颗粒表面 ,通过化学气相沉积Ni涂层 ,解决了颗粒与基体的润湿性问题 ;采用负压铸渗工艺制备了氧化铝 不锈钢基表面复合材料 ,并研究了该复合材料在此工况下的静态耐蚀性能 ,发现其耐蚀性能超过了高铬钢 .  相似文献   

5.
6.
以尿素为沉淀剂,用强迫水解方法对工业生产TiO2颗粒表面进行了A l2O3包膜表面改性.研究了氧化钛粉体分散性与pH值关系,包膜pH、温度及陈化时间等影响.采用FESEM、XRD和Zeta电位仪进行表征,结果表明:在碱性条件下可以在TiO2颗粒表面获得较理想的A l2O3包膜;工业生产TiO2颗粒进行A l2O3包膜表面改性,包膜层晶体结构以γ-A l2O3为主,分散性和稳定性提高.  相似文献   

7.
将TiO2和B2O3原料混合后加入铝熔体,采用原位反应的方法,使其与铝液发生反应,制备出(TiB2+Al2O3)双相增强铝基复合材料.研究反应物加入量、反应时间、搅拌强度对复合材料的组织形貌产生的影响.结果表明,反应物加入体积分数为20%,反应时间为20 min,较大搅拌强度条件下原位生成的增强颗粒明显增多,晶粒细小,分布均匀.  相似文献   

8.
为了克服Ag作为超导基底时的高温使用缺陷,提高Ag的熔点及其力学性能,选择了高熔点的Al2O3作为掺杂物,通过传统粉末冶金方法制备了Al2O3/Ag基复合材料.结果表明,在Ag基体中掺杂≥1%Al2O3粒子可以提高Ag的熔化温度tm至970℃以上,Al2O3质量分数大于3%时,样品tm可提高至990℃以上.在Al2O3质量分数小于3%样品中,2%Al2O3/Ag基复合材料具有最大的硬度、抗拉强度以及最小的线膨胀系数与延伸率.由于2%Al2O3/Ag样品具有合适的熔化温度、接近于YBaCuO的线膨胀系数和最好的力学性能,满足了后期Ar气氛下热处理YBaCuO超导带材对基底的要求.  相似文献   

9.
分别对SiC颗粒进行高温氧化、酸洗和高温氧化后再酸洗等表面处理,采用粉末冶金工艺制备了SiC颗粒增强的6066Al基复合材料。金相显微照片、扫描电镜照片和室温拉伸性能分析结果表明:采用氧化和酸洗表面处理工艺能使SiC颗粒产生明显钝化,且随着氧化时间的延长,钝化效果提高,SiC颗粒分布更均匀;随着氧化时间的延长,复合材料的抗拉强度σb和断裂韧性K1C提高,且酸洗态的性能优于相应氧化态的性能;6066Al基复合材料的力学性能除与SiC颗粒分布的均匀程度有关外,还与颗粒的形状以及复合材料的界面状况有关。  相似文献   

10.
以热压成型法制备了纳米Al2O3和聚四氟乙烯(PTFE)填充聚醚醚酮基(PEEK)复合材料,利用销一盘摩擦磨损试验机研究了干摩擦条件下纳米Al2O3和PTFE填充PEEK的摩擦磨损特性。结果表明,纳米Al2O3使PTFE填充PEEK复合材料的摩擦磨损特性得到明显改善,其改善程度与纳米Al2O3的填充量有关,当纳米Al2O3的含量较低(3%)时,纳米Al2O3-PTFE-PEEK复合材料与钢对偶面产生的磨损模式以磨粒磨损和犁削为主;而当纳米Al2O3的含量较高(10%)时,纳米Al2O3填充PEEK的磨损模式主要是粘着磨损;纳米Al2O3的含量为5%~7%时,PEEK复合材料的摩擦系数和比磨损率最低。随着载荷的增加,纳米Al2O3-PTFE-PEEK复合材料的摩擦系数将因纳米粒子效应和表面摩擦温升呈现下降趋势。  相似文献   

11.
:钢材经热浸镀铝后 ,具有了良好的抗高温氧化腐蚀性能。为进一步提高 1Cr18Ni9Ti、1Cr13不锈钢的高温使用性能 ,本文对两种材料进行了热浸镀稀土铝合金处理和抗高温氧化性能的试验。高温氧化试验结果表明 ,1Cr18Ni9Ti、1Cr13不锈钢经热浸镀铝处理后抗高温氧化腐蚀性能明显提高 ,这主要取决于合金层中Al-Fe金属间化合物在高温氧化中的变化。 90 0℃氧化 5 0 0h ,1Cr18Ni9Ti钢浸镀件形成致密的α -Al2 O3氧化膜和 β -NiAl相层 ;1Cr13钢浸镀件形成Al2 O3氧化膜及Cr2 O3氧化物。研究表明 ,不锈钢中Cr、Ni元素对提高抗高温氧化性具有重要的影响作用。  相似文献   

12.
13.
采用腐蚀增重法,结合扫描电镜、能谱分析和X射线衍射技术对比研究了铁素体/马氏体钢P92和奥氏体不锈钢HR3C在550~650°C/25 MPa的超临界水中的腐蚀行为.结果表明,2种材料以均匀腐蚀为主,并且腐蚀增重均服从幂指数规律.P92钢的腐蚀增重比HR3C钢高近2个数量级,其表面氧化膜为典型的双层结构;温度极大地加速了P92钢的腐蚀,当温度低于650°C时其表面氧化膜完整连续,而在650°C时表面氧化膜出现开裂.HR3C钢的腐蚀增重随温度的升高而增大,但是并不明显;HR3C钢表面出现了少量的疖状腐蚀,基体材料内的Cr极大地抑制了疖状腐蚀的发展,其深度约为2μm.  相似文献   

14.
通过电化学阻抗谱研究了不同稀土含量430铁素体不锈钢在质量分数为3.5%中性氯化钠溶液中的腐蚀电化学特征,通过ODF分析和反极图定量计算研究了含稀土430铁素体不锈钢中织构组分特征.结果表明:试验钢中织构由较弱的{111}和{112}纤维织构组成,稀土质量分数为0.037%就可以显著提高两种纤维织构的体积分数.随着稀土含量的继续增加,{111}和{112}纤维织构的体积分数同步下降直到稀土质量分数为0.137%时才又同步升高.由织构构成的低能量状态的小ΣCSL晶界,使得试验钢的耐蚀性呈现了与织构取向一致的变化趋势.  相似文献   

15.
钢表面化学气相沉积TiC薄膜的高温腐蚀动力学分析   总被引:4,自引:0,他引:4  
探讨了在O2+Br2+Ar气氛中,耐热纲表面化学气相沉积碳化钛薄膜的高温腐蚀行为与碳化钛的组织形态、腐蚀温度、气氛中的氧分压和漠分压的关系。发现高温腐蚀主要是碳化钛薄膜和基体中铁的氧化,在沉积温度和碳/钛比高时获得的致密的TiC组织,更抗高温氧化。还发现氧化速率与腐蚀温度、气氛中的氧分压和滇分压的增高而增大,特别是气氛中的溴,少量添加即可明显增大氧化速率,澳通常起催化作用。  相似文献   

16.
为测量不锈钢的腐蚀电阻,研究聚吡咯膜(PPy)对不锈钢腐蚀的防护机理,应用循环伏安曲线、电化学阻抗谱和开路电位-时间曲线测量方法等电化学手段研究了镀PPy膜后不锈钢在十二烷基苯磺酸钠溶液和NaCl溶液中的电化学行为,并通过建立合理的等效电路图对其电化学阻抗图谱进行解析.结果表明:所建立的等效电路分离出不锈钢的腐蚀电阻与PPy的氧化还原电阻,能较好地解析不锈钢/PPy/溶液的阻抗行为;在高盐溶液3.5%NaCl溶液中,PPy膜对不锈钢腐蚀具有很好的保护作用;在PPy膜保护不锈钢的过程中,不锈钢和PPy膜间发生电化学反应,释放十二烷基苯磺酸根以及生成不溶性物质来抑制金属的腐蚀.  相似文献   

17.
通过吸附实难、XRD等方法研究了模拟碳钢表面氧化物对硅酸盐在金属表面吸附过程的影响;用极化曲线法研究了硅酸盐在碳钢表面氧化物上的电化学行为;讨论了在Fe/FeOOH/硅酸钠溶液体系中,温度、pH、金属离子、硅酸盐稳定剂等因素对硅酸钠界面缓蚀作用的影响。  相似文献   

18.
奥氏体不锈钢 1Cr18NigTi 的温加工温度范围以 200—400℃为宜。在此温度范围内加工时,钢具有较低的变形抗力、较高的工艺塑性,加工后具有良好的力学性能。当变形速率一定时,真应力的大小取决于变形温度和变形程度。当 T=200—400℃ 时,σ=Kε~n;当 T=400—600℃ 时,σ=K_1ε~ne~(B/T_K)。钢的变形抗力、塑性和加工后室温力学性能的变化主要是由钢组织中的双晶界间距和位错密度的变化所决定。  相似文献   

19.
对无镍奥氏体不锈钢经塑性变形后自由表面微观形态变化以及对耐腐蚀性能的影响进行了观察分析.结果表明:随着压缩应变量的增加,各晶粒变形不均匀性加剧,试样表面形成的褶皱增大,原本平整的表面逐渐变成粗糙表面,茶碱对试样无腐蚀作用,而生理盐水对变形试样起应力腐蚀作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号