首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用紫外可见吸收光谱对α-环糊精(α-CD)与二甲氨基查尔酮之间的分子识别作用进行了研究。结果表明,α-CD与二甲氨基查尔酮基团之间通过分子识别作用形成1∶1的包结物,分别以吸光度和特征波长的变化确定α-CD与4-羟基-4’-二甲氨基查尔酮包结物的结合常数Ka分别为1.1×105M-1和8.5×103M-1,通过特征波长获得α-CD和端基含二甲氨基查尔酮的聚N-异丙基丙烯酰胺聚合物的结合常数Ka为4.2×103M-1。  相似文献   

2.
合成了丙烯酸(肉桂酰氧乙基)酯(CEA)及N-丙烯酰吗啉(NAMPL)的共聚物P(CEA-co-NAMPL).用分光光度计研究了聚合物水溶液的温敏性,其最低临界溶解温度(LCST)为35~38℃.傅立叶红外光谱研究的聚合物膜的光交联约在15 m in内完成,P(CEA-co-NAMPL)交联膜具有较好的水溶胀性,当P(CEA-co-NAMPL)共聚物酰化度为8%,光照时间7 m in时,P(CEA-co-NAMPL)共聚物水凝胶溶胀率最大为7 g/g.  相似文献   

3.
以温度响应性N-异丙基丙烯酰胺(NIPAM)和pH响应性丙烯酸(AA)作为功能单体,与甲基丙烯酰氧丙基七异丁基笼形倍半硅氧烷(MAPOSS)通过可逆加成-断裂转移聚合法(reversible addition-fragmentation chain transfer polymerization,RAFT)共聚,合成具有双重响应性的多面体齐聚倍半硅氧烷(polyhedral oligomeric silsesquioxane,POSS)基嵌段共聚物PMAPOSS-b-(PNIPAM-co-PAA);采用动态光散射(dynamic light scattering,DLS)、紫外-可见吸收光谱和荧光光谱等测试手段研究了POSS基嵌段共聚物的温度与pH响应行为.结果表明:嵌段共聚物胶束在外部环境pH变小时,粒径明显增大,而在较高pH下,胶束粒径保持稳定;当外部环境温度小于低临界溶解温度(lower critical solution temperature,LCST)时,嵌段共聚物胶束粒径较大,当温度升高到LCST及以上时,嵌段共聚物胶束粒径变小;对于包芘共聚物胶束,在酸性条件下芘能较快释放,且释放速度与疏水链段长短有关,而当包芘共聚物胶束所处环境温度高于LCST时也会导致芘的释放.  相似文献   

4.
以含偶氮苯的三硫酯作为RAFT试剂,将N,N-二甲基丙烯酰胺通过RAFT本体聚合制备了光敏性的端基含偶氮苯的聚(N,N-二甲基丙烯酰胺),并通过紫外光谱、傅里叶变换红外光谱、核磁共振氢谱、凝胶渗透色谱对PDMA-AZO聚合物的结构进行了表征。PDMA-AZO聚合物在水、乙醇、三氯甲烷中的光敏性研究表明,PDMA-AZO聚合物在以上三种溶液中都能够进行快速、可逆的光致顺反异构反应,80 s达到光稳态。  相似文献   

5.
利用原子转移自由基聚合(ATRP),以端基修饰2-溴-2-甲基丙酰基的聚乙二醇(PEG-Br)引发温敏单体N-异丙基丙烯酰胺(NIPAM)和光活性单体邻硝基苄基丙烯酸酯(NBAE)共聚,制备得到具有光响应特性的温敏嵌段共聚物.动态光散射实验和紫外-可见吸收光谱表明,该聚合物的低临界溶解温度(LCST)可以通过紫外光照(λ≥310nm)进行后调控,在10mmol/L pH 7.4磷酸缓冲液(PBS)中,可获得聚合物LCST达约26℃的调控幅度.该光响应温敏嵌段共聚物具有良好的水溶性,LCST可调控范围广,产物稳定,有望应用于建立新型药物控制释放系统.  相似文献   

6.
分别以N,N-二乙基丙烯酰胺(DEA)和丙烯酸(AA)为温敏性和pH敏感性单体,AIBN为引发剂,四氢呋喃为溶剂,采用自由基聚合方法,制备单体组成比不同的系列无规共聚物P(DEA-co-AA).通过表征无规共聚物N元素质量分数,结合反应体系中单体的喂料比,得到了共聚时2种单体的竞聚率.对P(DEA-co-AA)进行苊烯标记,采用荧光光度仪,研究共聚物中不同单体比例对温敏性和pH敏感性的影响.结果表明:共聚时,AA反应活性比DEA反应活性大(r2/r1=1.371 5);随无规共聚物中AA比例增大,共聚物的最低临界溶解温度(LCST)升高,但相转变温度区间变宽,温敏性减弱,而pH敏感性增强;反之,单体DEA比例越大,LCST降低,但相转变温度区间变窄,温敏性增强,而pH敏感性减弱.  相似文献   

7.
含聚氧乙烯支链阳离子聚丙烯酰胺微粒的合成   总被引:2,自引:0,他引:2  
采用反相微乳液共聚合法合成了粒径40-90nm、多分散系数0.5600.65的含聚氧乙烯支链交联阳离子聚丙烯酰胺内米微粒,透射电子显微镜观测表明该微粒具有球状结构。FTIR谱和^13CNMR谱的测试结果证明所合成的微粒是由丙烯酰胺、聚氧乙烯大单体、丙烯酰氧基乙基三甲基氯化铵和N,N′-亚甲基双丙烯酰胺4种链节所组成,而且各链节的比例与原料配比基本相同。  相似文献   

8.
通过对三取代-2-烯-1,4-二酮及其衍生物进行了探索合成。在环戊二烯基三苯基膦氯化镍[C_5H_6(PPh_3)NiCl]作用下,由N-甲基-N-苯(/4-甲基苯基)甲酰基亚甲基苯胺与1,3–二苯基-1,3-丙二酮在二氯乙烷(DCE)介质中发生Knoevenagel交叉偶联反应,得到α位具有三个羰基的乙烯化合物,即三取代2-烯-1,4-二酮。同时,对上述产物与胺类亲核试剂进行了自动串联催化反应的探索合成,并摸索条件进行优化。通过核磁共振氢谱、核磁共振碳谱及X-单晶衍射等手段对合成产物的结构进行了表征,证明了合成方法的可靠性。  相似文献   

9.
通过4-羟基-4'-二甲氨基查尔酮和S-十二烷基-S'-(α,α'-二甲基-α″-乙酸)-三硫代碳酸酯在缩合剂DCC(二环己基碳二亚胺)和促进剂DMAP(4-二甲氨基吡啶)作用下,合成了含二甲氨基查尔酮基团的三硫代碳酸酯,并通过熔点、红外光谱、紫外光谱和核磁共振氢谱对其结构进行了表征。研究了该化合物在不同极性溶剂中的发光特性,结果表明,随着溶剂极性增加,含二甲氨基查尔酮基团的三硫代碳酸酯的紫外-可见特征吸收波长和荧光发射波长均发生红移,荧光强度呈现先升高后下降的特点,其荧光具有溶剂极性敏感的特性。  相似文献   

10.
采用自由基溶液聚合法,在不同温度下制备了N-异丙基丙烯酰胺(NIPAAm)与N-羟甲基丙烯酰胺(NHMAAm)的共聚物P(NIPAAm-co-NHMAAm)温敏水凝胶,并对其温敏性、溶胀动力学及其快速响应行为进行了研究。结果表明,共聚单体NHMAAm的添加量以及合成温度对凝胶的温敏响应性均有较大影响,NHMAAm摩尔分数小于15%时,共聚水凝胶具有明显的温敏性,其低临界溶液温度LCST随着NHMAAm含量的增加而提高;在60℃(高于共聚凝胶的LCST)制备的凝胶,快速响应性好,凝胶在4~8h内达到溶胀平衡,5min内能达到退溶胀平衡,失水率达到80%左右,且具有稳定的反复溶胀性。  相似文献   

11.
研究了环已酮、苯乙酮、4-(N,N-二甲基氨基)苯甲醛与丙烯胺的反应,反应生成N-甲亚基-2-丙烯-1-胺类化合物(2a、2b、2c),2c在二甲亚砜溶液中,叔丁醇钾催化下反应生成N-(4-N',N'-二甲基氨基)苯甲亚基-1-丙烯-1-胺3c.  相似文献   

12.
以N-异丙基丙烯酰胺(NIPAM)、N,N-二甲基丙烯酰胺(DMAM)为单体,通过可逆加成-断裂链转移聚合(RAFT),制备了一种临界相转变温度(LCST)为42.5℃的温敏性两亲性嵌段共聚物PLA29-b-P(NIPAM29-co-DMAM13)。通过高温前驱体分解法制备了单分散超顺磁性纳米粒子Mn_(0.6)Zn_(0.4)Fe_2O_4;并采用自组装得到了载有药物(喜树碱,CPT)和磁性纳米粒子的磁热温敏复合载药胶束。通过透射电子显微镜、紫外光分光光度计以及MTT等对该胶束的形态、药物控释能力和细胞毒性进行了研究。结果表明,该胶束具有良好的生物学和药物控释性能。同时,通过激光共聚焦显微镜与流式细胞仪研究了磁热温敏复合载药胶束在不同条件下对特定肿瘤细胞的生长抑制作用。结果表明,磁热疗和化疗的高效协同效应可促进肿瘤细胞对药物的吞噬,增强药物对肿瘤细胞的毒性。对该载药胶束的磁热化疗协同增效机制也进行了初步探究。  相似文献   

13.
将新合成的4-(4-((4-乙氧基苯基)偶氮)苯氧基)-N-(2-(甲基丙烯酰氧基)乙基)-N,N-二甲基丁烷-1-溴化铵(DMAE-EAPB)和N-异丙基丙烯酰胺凝胶(NIPAm)共聚,制备得温度/光双重敏感共聚物凝胶.用差示扫描量热法、紫外-可见吸收光谱法和称重法对其溶胀性能进行了研究,结果表明:凝胶光响应速度非常快,紫外光照射4 min,偶氮苯反-顺结构转化达到平衡;随着DMAE-EAPB加入量的增加,共聚物水凝胶的相转变温度(LSCT)逐渐减小,温度敏感性变差,紫外光照射后共聚物的LSCT回升约0.8~1.2℃,温度敏感性也有所好转;另外,在一定的温度范围内,紫外光照射可以使共聚凝胶的溶胀比提高0.34 ~0.80.  相似文献   

14.
新型含氟丙烯酸类聚合物的合成及其在棉织物上的应用   总被引:1,自引:0,他引:1  
以氯磷酸-二(七氟丁基)酯和N-(p-羟基苯基)甲基丙烯酰胺为原料合成了一种新型的丙烯酰胺单体双七氟丁氧基甲基丙烯酰胺对苯氧基膦酸酯(FPA),并采用乳液聚合法,将FPA、甲基丙烯酸-1,3-双(二乙氧基膦酰胺基)异丙酯(BisDEAEPN)、丙烯酸羟乙酯(HEA)和甲基丙烯酸十八烷酯(SMA)共聚得到稳定的共聚物PFPA乳液.该PFPA乳液具有良好的拒水性能,经其整理的棉织物对水的接触角达到137°,同时该棉织物具有一定的阻燃性能,其极限氧指数(LOI)为26.5%.  相似文献   

15.
用丙烯酰胺(AM)、N,N-二甲基丙烯酰胺(DMAM)、[3-(甲基乙烯酰胺)丙基]二甲基-(3-磺酸)铵(DMMPPS)和[2-(甲基丙烯酰基氧基)乙基]二甲基-(3-磺酸丙基)氢氧化铵(DMAPS)单体通过氧化还原引发剂引发自由基聚合合成AM-DMMPPS、AM-DMAM-DMMPPS、AM-DMAPS和AM-DMAM-DMAPS 4种两性离子共聚物,并对两性离子聚合物进行表征和性能评价.研究结果表明,实验合成的4种共聚物AM-DMMPPS、AM-DMAMDMMPPS、AM-DMAPS和AM-DMAM-DMAPS都有增黏、抗盐、耐温的效果.在相同的反应条件下,在合成的共聚物中,AM-DMMPPS增黏、抗盐、耐温的效果最佳,其比浓黏度达36.8,dL/g.  相似文献   

16.
首先应用三甲基烯丙基硅合成中间体2,3,4,6-四-O-乙酰基-1-烯丙基-α-D-吡喃糖苷(3),然后在N-溴代丁二酰亚胺(NBS)/CCl4体系中将溴引入烯丙基位,采用1,8-二氮杂环[5,4,0]-十一烯-7(DBU)在超声波作用下发生声消除反应,一步合成2,3,4,6-四-O-乙酰基-1-丙二烯基-β-D-吡喃糖苷(1)。  相似文献   

17.
通过紫外引发聚合技术制备了具有疏水特性的三元阳离子聚丙烯酰胺,并用于典型环境雌激素雌酮(E1)的分离和去除。由丙烯酰胺(AM)、丙烯酰氧基乙基三甲基氯化铵(DAC)和丙烯酰氧基乙基二甲基苄基氯化铵(AODBAC)单体合成三元共聚物(PADA),并采用傅里叶变换红外光谱(FT-IR),核磁共振氢谱(~1H NMR)和热失重/差示扫描量热仪(TG/DSC)分别对聚合物的结构和热分解性能进行表征。FT-IR和~~1H NMR结果表明聚合物成功合成。通过引入疏水性基团(苯基),TG/DSC分析观察到PADA热稳定性能提高。在最佳条件下(p H=7,絮凝剂用量为4.0 mg/L),用高效絮凝剂PADA-3(阳离子度为40%,特性黏度为6.30 d L·g~(-1))得到最佳E1絮凝性能(E1去除率90.1%,絮凝体积18.3μm,絮凝动力学22.69×10~(-4)s~(-1))。Zeta电位和絮体尺寸分析用于探究E1去除的絮凝机理。结果表明,E1去除过程中,电中和、吸附和架桥效应占主导地位。  相似文献   

18.
4,8,8-三甲基-7,8,9,10-四氢苯并[h]色烯-2-酮(4)与N-溴代丁二酰亚胺发生7-位选择性溴代及重排反应,生成7-溴-4,8,8-三甲基-7,8,9,10-四氢苯并[h]色烯-2-酮(9)和4,7,8-三甲基-2H-苯并[h]色烯-2-酮(11),收率分别为37%和34%,并且提出了该重排反应的可能机理.  相似文献   

19.
3-N,N-二甲基氨基-1-芳杂环基-2-丙烯-1-酮合成   总被引:1,自引:0,他引:1  
目的合成3-N,N-二甲基氨基-1-(3-吡啶基)-2-丙烯-1-酮及其类似物。方法用二甲苯作为溶剂,使N,N-二甲基甲酰胺二甲基缩醛与乙酰基芳杂环类化合物,如乙酰吡啶、乙酰噻吩和乙酰呋喃等,在138℃反应24 h,生成3-N,N-二甲基氨基-1-芳杂环基-2-丙烯-1-酮类化合物,并对目标化合物进行了分析鉴定及表征。结果合成7个目标化合物,产率为86%-92%。结论合成方法简便,反应条件较温和,反应产率较高,目标化合物可用于合成新型抗癌药物甲磺酸伊马替尼及其类似物。  相似文献   

20.
利用一种新的阳离子单体3-丙烯酰氧基-2-羟丙基三甲基氯化铵(AHPTAC)与丙烯酰胺(AM)和2-丙烯酰氨基-2-甲基丙磺酸(AMPS)通过水溶液聚合得到一种三元两性共聚物絮凝剂P(AM-AHPTAC-AMPS)(PAAA),将PAAA与聚合氯化铝铁(PAFC)复配用于处理两种压裂废水,并比较评价其与阳离子聚丙烯酰胺(CPAM)的絮凝性能。结果表明:合成PAAA的最适宜条件为AM、AHPTAC和AMPS的物质的量之比为1∶3∶2、单体总用量占反应体系的质量比为20%、复合引发剂VA-044与(NH 4)2S 2O 8-NaHSO 3质量比为1∶1、复合引发剂用量占反应体系的质量比为0.2%、反应温度为55℃;PAAA/PAFC复合絮凝剂具有较好的絮凝性能,对胜利孤岛压裂废水及涪陵页岩气压裂废水的COD Cr去除率分别为55.5%和82.7%;对水溶性有机污染物质含量高的废水去除效果更优,COD Cr去除率比CPAM/PAFC提高26%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号