首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

7.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

8.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
铜镍尾矿细菌浸出的试验研究   总被引:2,自引:0,他引:2  
通过正交试验研究了pH值、矿浆质量分数、矿石粒度、细菌接种量、表面活性剂吐温20用量对铜镍矿尾矿细菌浸出的影响.试验结果表明,铜浸出的最佳条件:pH值为1.5,矿石粒度为小于0.074 mm,接种量(体积分数)为50%以及不添加表面活性剂;镍浸出的最佳条件:pH值为1.0,矿石粒度为大于0.147mm,接种量(体积分数)为25%及不添加表面活性剂.细菌氧化后,铜和镍的浸出率分别达到63.41%和91.74%.  相似文献   

12.
应用共享近邻法对新疆黄山铜镍矿区进行了成矿靶区预测研究,选用了Cu,Ni,Co,V,Ti等土壤化探数据和超基性岩相作为变量进行分析,最终计算结果与实际地质情况基本吻合。  相似文献   

13.
黄山铜镍成矿带中含镍矿物种类繁多,成分复杂。根据显微镜下鉴定和电子探针成分分析,含镍矿物可分为Fe-Co-Ni-S系列;Fe-Co-Ni-As系列;Fe-Co-Ni-As-S系列。由于此类矿物相似的光性较多,本文着重进行了组分特征的研究。  相似文献   

14.
采用旋转圆盘电极,用双脉冲电位法从简单的镀液中电沉积Cu-Ni层状材料,研究了镀液中铜含量、添加剂、转速对镀层的组成和结构的影响,并用扫描电镀和X-射线衍射研究了镀层的形貌和组成。  相似文献   

15.
 采用氧化石墨(GO)作为碳素载体前驱体,金属氨配合物作为金属前驱体,用水合肼以低温液相还原的方式制备了碳负载铜镍合金催化剂(Cu-Ni/C)。通过FTIR、XRD、SEM、TEM和微反技术来研究催化剂的微观结构和反应性能。结果表明,90 ℃下还原得到碳负载的铜镍合金催化剂的合金粒径小于50 nm,能很好的分散于载体表面。在140 ℃,0.6 MPa的条件下,CH3OH和CO2在催化剂的金属活性位上发生反应,生成碳酸二甲酯(DMC),甲醇的最高转化率为4.2%,DMC的选择性达到84.5%。  相似文献   

16.
采用基于密度泛函理论的DMol团簇计算方法,对二元过渡金属CunNim(3≤n+m≤6)团簇的各种组分进行了全面的优化计算,通过平均结合能与最高占据轨道与最低未占据轨道能级的能隙计算表征和分析了其结构稳定性,同时计算了所属点群、原子间距、及总自旋磁矩等,分析得出Ni团簇中掺入少量Cu可以增加团簇的稳定性,在中性CunNim团簇中,团簇的对称性和原子间距是决定团簇总自旋磁矩的重要因素。  相似文献   

17.
周文龙 《科学技术与工程》2013,13(20):5908-5914
通过对尾硐铜镍硫化物矿床矿区地质特征、矿体分布特征、矿床矿化特征和S同位素分析,认为该矿区内各岩相带呈渐变过渡关系,为同期侵入岩体,存在深部岩浆熔离作用。橄榄苏长辉长岩和辉长苏长岩是矿区内主要赋矿岩体。S同位素分析显示其主要为幔源原生硫;但也可能有硫通过地壳混染作用加入。含矿岩浆深部熔离和岩体侵位后的岩浆分异结晶是导致金属硫化物富集成矿的主要过程。岩浆期后热液的叠加改造作用对部分地段的成矿物质富集有重要贡献。  相似文献   

18.
Supercooling directional solidification (SDS) is put fotward by combination of melt supercooling and conventional solidification by application of supercooling inheritance. On the self-designed SDS equipment, SDS of Cu-Ni alloy was achieved successfully The results are as follows f (i) The primary arm spacing is about 30 μm, the growth of secondary arms are strongly suppressed. The primary arm spacing is nearly the same as LMC method (GL=25 K/mm, V=500 pm/s), the primary stems are straight, fine and completed. with an inclination angle of about 5.8° (ii) A semi-quantitative T-T model is brought fotward to describe the dendrite growth rate V vs. undercooling AT The prediction of T-T model agrees well with experimental results. The formation of fine equiaxed dendrites, transition region and dendrite region can be explained successfully by △T-V-x relation of T-T model.  相似文献   

19.
采用基于第一性原理计算的Chen-Mbius三维晶格反演基础上获得的原子间相互作用势参数,运用最陡下降法和共轭梯度法结合起来的最优化计算Smart方法得到了CuxNi19-x(x<19)二元过渡金属混合团簇的稳态构型,发现Cu-Ni混合团簇中有明显Cu元素偏析现象,即Cu和Ni并没有互相混合形成有序结构,而是分别聚集在一起,所形成的体系对称性很低,呈割据状态。  相似文献   

20.
新疆东部康古尔塔格断裂带的基本特征及地质意义   总被引:1,自引:0,他引:1  
新疆东部的康古尔塔格断裂带不是板块俯冲带,而是地体的一条边界断裂带。其演化历史可分为三个主要阶段:深断裂活动阶段、韧性剪切活动阶段和断块活动阶段,并相应控制了阿齐山-黄山复合地体的形成与发展,还直接控制了黄山-镜儿泉地区铜镍含矿镁铁超镁铁杂岩体的空间展布与形态特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号