首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
多粒子群协同优化算法   总被引:47,自引:0,他引:47  
提出一种多粒子群协同优化(PSCO)方法.PSCO是2层结构:底层用多个粒子群相互独立地搜索解空间以扩大搜索范围;上层用1个粒子群追逐当前全局最优解以加快算法收敛.这些粒子群含的粒子数以及粒子状态更新策略不要求相同.为改善粒子群容易陷入局部极小的弱点,提出扰动策略,当1个粒子群的当前全局最优解未更新时间大于扰动因子时,重置粒子的速度,迫使粒子群摆脱局部极小.用Rosenbrock函数等3种基准函数做优化实验表明,PSCO性能优于经典PSO,FPSO和HPSO等算法.  相似文献   

2.
为提高粒子群算法的寻优速度和精度,提出了一种改进的粒子群算法,新算法是在标准粒子群算法的基础上对个体极值作变异操作.通过三个基准函数的测试,结果表明新算法在收敛速度、收敛精度和全局寻优能力方面均明显优于其它几种粒子群算法.  相似文献   

3.
简化的自适应粒子群优化算法   总被引:2,自引:0,他引:2  
对基本粒子群优化算法作了一些改进:通过去掉速度因子简化算法结构,引入指数下降形式的惯性权重,对全局极值进行自适应的变异操作,进而提出一种简化的带变异算子的自适应粒子群优化算法。通过与其他改进的粒子群算法的数值实验对比分析,表明提出的新算法能够有效地避免早熟收敛问题,并能较大幅度地提高收敛速度和收敛精度。  相似文献   

4.
一种改进的自适应粒子群优化算法   总被引:8,自引:1,他引:8  
针对粒子群优化算法中出现对大规模问题搜索失败,分析了粒子群优化算法的收敛性,指出了粒子速度与搜索失败的关系,提出了一种根据速度信息自适应调整参数的粒子群优化算法,该算法在满足收敛性的条件下,搜索过程中粒子根据理想的速度自适应调整参数进行搜索。修改后的算法经过大量测试函数上的模拟实验验证,并与其他算法进行了比较。实验结果表明,该算法能克服基本PSO算法在求解高维、多峰等复杂非线性优化问题时易陷入局部最优和不收敛等搜索失败的问题。  相似文献   

5.
针对当前我国油田开采难度大、 经济效益较低等问题, 建立以利润最大化为优化指标, 以年度增油目标、 增液目标、 增注目标为约束条件的多目标油田开采优化模型, 并提出一种双种群协同多目标粒子群优化算法求解该优化模型. 该算法通过双种群协同进化策略扩大搜索空间, 提高算法的全局搜索能力, 并结合Lévy飞行保证种群多样性, 提高算法收敛效率. 实验结果表明, 该算法能有效求解油田开采优化模型, 可优选出满足目标和约束条件的结果.  相似文献   

6.
一种基于免疫选择的粒子群优化算法   总被引:2,自引:0,他引:2  
粒子群算法是一种新的群体智能算法,被广泛用于各种复杂优化问题的求解,但算法存在着过早收敛问题.为了克服算法早熟的缺点,将粒子群看作是一个复杂的免疫系统,借鉴生物学中免疫系统自我调节的机制,提出了一种新的基于免疫选择的粒子群优化算法(IS-PSO).免疫系统中的抗原、抗体和亲和度分别对应了待优化函数的最优解、候选解和适应度.IS-PSO通过免疫算法中免疫记忆、疫苗接种、免疫选择等操作有效地调节PSO算法中种群的多样性.给出了算法的详细步骤,并将本文提出的算法与基本的粒子群算法(bPSO)在几个典型Benchmark函数的优化问题应用中进行了比较,仿真结果表明:IS-PSO算法可以有效避免早熟问题,提高粒子群算法求解复杂函数的全局优化性能.  相似文献   

7.
基于等级熵的自适应粒子群优化算法   总被引:1,自引:0,他引:1  
分析了粒子群耗散结构的特性,提出了基于等级熵的自适应粒子群优化(EPSO)算法.在演化过程的前期,针对粒子群优化(PSO)算法具有收敛速度慢、等级熵较大等特点,EPS0采用精英多父体杂交算子来提高算法的收敛速度,使群体形成有序的耗散结构.随着熵的减少.EPSO产生一个微小的混沌给予系统一个外界的负熵,使演化过程向更优适应值的方向发展.数值实验结果表明,该算法具有收敛精度高和收敛速度快的特点,可快速有效地求解某些优化问题.  相似文献   

8.
一种基于种群多样性的自适应粒子群算法   总被引:2,自引:0,他引:2  
以信息熵的角度研究了种群多样性测度的指标,提出了一种新的自适应粒子群算法.通过对种群多样性测度新指标的应用,采用保留最优个体的精英保留变异操作、新的速度项和动态惯性权重等技术,有效提高了种群的多样性.仿真试验说明了本文算法的优点.  相似文献   

9.
针对当前我国油田开采难度大、 经济效益较低等问题, 建立以利润最大化为优化指标, 以年度增油目标、 增液目标、 增注目标为约束条件的多目标油田开采优化模型, 并提出一种双种群协同多目标粒子群优化算法求解该优化模型. 该算法通过双种群协同进化策略扩大搜索空间, 提高算法的全局搜索能力, 并结合Lévy飞行保证种群多样性, 提高算法收敛效率. 实验结果表明, 该算法能有效求解油田开采优化模型, 可优选出满足目标和约束条件的结果.  相似文献   

10.
将禁忌搜索思想引入粒子群优化算法中,改进惯性权重,添加罚函数重新构造适应度函数;在此基础上,提出了一种基于禁忌搜索的新的混合粒子群优化算法(NHPSO),通过4个标准测试函数实验,结果表明:NHPSO算法比基本粒子群优化算法(PSO)具有更好的全局寻优能力、更快的收敛速度以及获得更高精度解的能力。  相似文献   

11.
将自适应粒子群优化(APSO)算法应用在系统辨识和参数优化中,定性地分析系统参数空间范围,把系统辨识和参数优化问题转化为参数空间寻优,利用APSO算法在寻优过程中有效避免局部最优的特点,在整个参数空间内并行寻找获得系统参数的最优解。通过对多种模型的仿真实验研究表明,APSO算法在系统辨识和参数优化问题中优于原有的GA和PSO方法。  相似文献   

12.
基于自适应随机惯性权的粒子群优化算法   总被引:2,自引:0,他引:2  
分析惯性权值对粒子群优化算法(PSO)优化性能的影响,提出了基于自适应随机惯性权(ARIW)的改进粒子群优化算法.在进化过程中,为粒子群中的各个粒子随机选取惯性权值,并随进化代数自适应地调整随机惯性权值的概率分布.使用四个基准函数进行测试,结果表明基于ARIW的PSO算法不但计算简便,而且能有效地调整算法全局与局部的搜索能力,显著提高了全局搜索的速度与精度.  相似文献   

13.
基于云模型的随机性、模糊性和稳定性特征,通过正态云发生器对量子粒子群优化算法(QPSO)进行改进,提出了一种基于正态云模型的自适应量子粒子群优化算法(CMAQPSO).该算法将正态云模型引入到QPSO算法的研究,定义了收缩扩张系数的云调整策略和粒子云变异算子的构建公式,给出了量子势阱中心调整策略和边界修正策略.用5个标准测试函数对SPSO,OPSO,CVCPSO,CMAQPSO 4种算法进行对比测试,实验结果表明,CMAQPSO在5个测试函数上的平均寻优效果都明显优于其他3种算法.  相似文献   

14.
基于云模型的随机性、模糊性和稳定性特征,通过正态云发生器对量子粒子群优化算法(QPSO)进行改进,提出了一种基于正态云模型的自适应量子粒子群优化算法(CMAQPSO).该算法将正态云模型引入到QPSO算法的研究,定义了收缩扩张系数的云调整策略和粒子云变异算子的构建公式,给出了量子势阱中心调整策略和边界修正策略.用5个标准测试函数对SPSO,OPSO,CVCPSO,CMAQPSO 4种算法进行对比测试,实验结果表明,CMAQPSO在5个测试函数上的平均寻优效果都明显优于其他3种算法.  相似文献   

15.
提出了一种自适应变异粒子群优化算法,该算法通过遗传变异提高种群多样性的方法使算法增强持续搜索能力,解决了PSO算法的早熟收敛问题。采用标准测试函数进行仿真实验,结果表明:提出的算法具有提高局部最优值的能力,且优化精度更高。  相似文献   

16.
一种动态非线性改变惯性权的自适应粒子群优化算法   总被引:1,自引:0,他引:1  
惯性权值线性递减(LDI)的粒子群算法不能很好地反映粒子搜索过程的复杂非线性行为,收敛速度和收敛精度仍不够理想。对此,提出一种动态非线性改变惯性权(DNI)的自适应粒子群算法。在该算法中通过引入非线性指数函数来描述惯性权值在进化过程中的动态变化特性,并通过数值实验确定了非线性函数关键控制参数的合适取值范围。通过典型测试函数验证算法的性能,并与文献报道的已有结果比较。实验表明:对单峰值函数优化问题,DNI自适应粒子群算法收敛速度明显优于LDI算法;对多峰值函数优化问题,DNI算法跳出局部最优的能力及收敛精度也好于LDI算法。  相似文献   

17.
【目的】针对标准粒子群优化算法在应用中暴露出的缺点,如在迭代后期收敛速度慢、搜索精度不高、容易陷入局部最优等,提出一种基于扰动的自适应粒子群优化算法。【方法】该算法将扰动因子加入速度更新公式中,使种群搜索范围扩大;采用自适应的惯性权重,以起到平衡全局和局部寻优能力的作用;对最优粒子进行自适应的柯西变异,拓展最优粒子的搜索空间,降低粒子陷入局部最优的可能性;最后对算法进行仿真实验。【结果】新算法能够增强全局搜索能力,有效避免局部最优,具有更快的收敛速度。【结论】新算法克服了标准粒子群优化算法的缺点,为进一步研究粒子群优化算法的改进和应用提供科学依据。  相似文献   

18.
投资组合是现代金融领域的一个研究热点,本文将投资模型中控制投资风险过大的风险因子e引入的基本微粒群算法,用来解决投资决策问题,取得较好的效果。实验数据表明微粒群算法高效、可靠,具有很强的使用价值。  相似文献   

19.
本文提出了一种新的自适应粒子群优化算法(ASPO)。该算法利用种群多样性信息对惯性权重进行非线性的调整,并在算法的后期引入速度变异算子和位置交叉算子,使算法摆脱后期易于陷入局部最优点的束缚。将其应用于函数优化问题中,仿真结果表明APSO算法能有效的解决函数优化问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号