首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
基于卷积神经网络的商品图像精细分类   总被引:2,自引:0,他引:2  
针对某一类别商品图像的精细分类,研究并实现了深度学习中的卷积神经网络方法。所设计的卷积神经网络由2个卷积层、2个亚采样层及1个完全连接层组成,特征平面的神经元只对其感受野的重叠区域做出反应,由反向传播算法调整网络参数最终完成学习任务。通过鞋类图像的精细分类实验表明,该方法平均分类正确率可达91.5%。  相似文献   

2.
花卉图像类内差异性大和类间相似性高使得花卉图像分类较难.传统花卉分类方法和普通卷积神经网络很难完整地表达花卉图像的特征,故而分类效果不理想.为提高花卉分类准确率,提出改进的InceptionV3网络用于花卉图片的分类.采用迁移学习的方法,将在大规模数据集上训练的InceptionV3网络用于花卉图像数据集的分类,对其中的激活函数进行改进.在通用Oxford flower-102数据集上的实验表明:该模型在花类图像分类任务中比传统方法和普通卷积神经网络分类准确率高,且比未改进的卷积神经网络准确率高,迁移过程准确率达到81.32%,微调过程准确率达到92.85%.  相似文献   

3.
徐静萍  王芳 《科学技术与工程》2022,22(29):12963-12968
为解决ReLU函数负区域取值为0而引发的对应权重无法更新的问题,提出了新的激活函数S-ReLU。该函数在负区域具有软饱和性,增加了负样本数据的关注度。通过赋予负区域输出值较小的导数,促进了负输入值的反向传播,提高了模型的鲁棒性。通过与其他常见激活函数在数据集MNIST、CIFAR-10上使用LeNet-5模型的对比实验,探究基于S-ReLU激活函数的图像分类效果。实验结果表明,对于MNIST和CIFAR-10数据集,相比使用其他激活函数,S-ReLU函数提高了模型的分类精度。  相似文献   

4.
为了提高人脸年龄分类的精度并且减少年龄分类过程所需的时间,提出了由微调深度卷积神经网络(FDCNN)和概率协同表示分类器(PCRC)构成的深度混合模型对人脸年龄分类的方法.首先,在IMDB数据集上将VGG-Face模型微调,得到一个新的深度卷积神经网络模型;然后,用该模型提取人脸图像的年龄特征,并将其送到基于概率协同表示的分类器进行年龄分类;最后,在FG-NET,MORPH和CACD数据集上对由FDCNN和PCRC构成的混合深度模型进行验证.从验证结果可知:PCRC比支持向量机(SVM)平均分类精度高出4.6%,并且对微调的深度模型倒数第二激活层输出的特征进行分类能取得更高的分类精度;与CA-SVR,DeepRank和DeepRank+相比,FDCNN和PCRC构成的混合深度模型的分类平均绝对误差分别低1.24,0.14和0.06;与由DCNN和SVM构成的分类模型相比,该混合深度模型的年龄分类精度高出3.6%.通过与VGG-Face模型各层运算时间分布对比可知该混合深度模型的分类时间大幅减少,因此混合深度卷积神经网络能很好地进行人脸年龄分类.  相似文献   

5.
由于图像的复杂性和人类情感的主观性,图像情感分类是一项非常具有挑战性的任务.针对深度学习方法没有充分考虑图像先验信息的问题,提出一个新的多层次深度卷积神经网络框架.该框架综合考虑全局和局部视角,引入显著主体、颜色和局部等先验信息,从多个层次学习图像的情感表达.实验结果表明,在公开的大数量级和小数量级情感图库上,该框架的分类准确率均高于现有的图像情感分类方法,其平均分类准确率比最优方法提高了2.8%,特别在情感类别"厌恶"上提高了15%.  相似文献   

6.
在显微镜下分析岩石薄片并对其进行分类时,人工鉴定效率较低且易受主观因素影响,为此提出了一种基于卷积神经网络深度学习的岩石粒度自动分类方法。该方法通过卷积网络模型实现图像特征自动提取,并同时建立模式分类器,实现基于薄片图像的粒度自动识别。采用鄂尔多斯盆地的4 800样品对卷积网络模型进行训练,通过1 200个样品对模型测试,测试集分类结果的准确度达到98.5%。理论分析与数据验证说明,通过深度学习所建立的卷积网络模型能够基于岩石薄片图像获得高效、准确、可靠的自动分类结果。  相似文献   

7.
为了研究Gabor滤波器在卷积神经网络中的性能和特征提取能力,提出了模拟视觉神经元特性的Gabor卷积神经网络计算模型.利用符合视觉神经元感知特性的Gabor滤波器作为建议神经网络的卷积核,将Gabor滤波器与CNN相结合,从而构建Gabor卷积神经网络.实验采用3个公共图像数据集进行图像分类任务,验证GaborCon...  相似文献   

8.
随着深度学习的发展,卷积神经网络在各种视觉任务中都具有优越的性能;特别是在二维图像分类上,更是获得了很高的分类精度。针对于高光谱图像分类问题,设计了一种新的卷积运算;利用高光谱图像谱-空联合信息建立三维卷积神经网络对其进行分类;并针对高光谱图像样本不均匀性,在网络输出不同类别加入不同的权重加以训练。通过对两个公开高光谱图像数据集的测试,相对于传统方法,能够得到更高的分类精度,表明卷积神经网络对高光谱图像具有更强的特征表达能力。  相似文献   

9.
基于深度卷积神经网络的胡萝卜外观缺陷分类实现   总被引:1,自引:0,他引:1  
本文介绍了利用深度卷积神经网络对胡萝卜外观缺陷进行分类的方法。由传送带、光源、相机、计算机和气动机构组成视觉分拣系统,采集了外观无缺陷以及存在开裂、分枝和高刺缺陷的胡萝卜样本图片。对样本进行标注和数据增广操作,基于样本对深度卷积神经网络模型进行了训练,最终模型在测试集上达到91.6%的分类准确率。本研究对于提升胡萝卜分拣效率降低人工成本具有重要意义。  相似文献   

10.
卷积神经网络的全连接层作为一个经典的分类器,是根据传统的梯度下降法来实现训练的,泛化能力有限.针对这一问题,提出了一种将卷积神经网络和极限学习机相结合的混合模型应用于图像分类领域.卷积神经网络用于从输入图像中提取特征,特征映射最终会被编码成一维向量送入极限学习机中进行分类.给出了混合模型的详细设计,包括参数设计、结构分...  相似文献   

11.
细粒度图像分类是计算机视觉中非常热的研究方向.由于同一个大物种的子类别之间具有相似的外观,相似的颜色,所以差别非常细微.因此,细粒度图像分类非常具有挑战性.为了解决这个挑战,该文提出一种基于注意机制的循环卷积神经网络用于细粒度图像分类.首先,根据注意机制循环提取一幅图像中的显著性物体区域;然后,对原始图像和每次提取的显著性区域分别进行分类;最后,融合分类层得分,进行最终分类.在非常有挑战性的公共数据集CUB-200-2011,Stanford Dogs和Stanford Cars上进行实验,与比较先进的实验方法进行比较,实验结果表明该文提出的方法非常有效.  相似文献   

12.
钳剪工具痕迹识别对法庭审判和侦查破案有着重要的参考价值,是物证分析识别的重要组成部分。针对该类工具种类繁多,现场痕迹复杂多样的特点,本文提出了一种基于卷积神经网络识别的钳剪痕迹分析方法。使用断线钳、线缆钳等10类常用钳剪工具,采集制作了300枚钳剪样本,在此基础上对特征区域进行录制,共200余段视频,提取钳剪痕迹特征图像共120 000张。提出TpsNet,以钳剪断头的侧面图片为识别分类对象,通过图片的分类实现对钳剪痕迹的分析识别。结果表明,TpsNet模型在钳剪痕迹数据集上的分类精度达到97.56 %,可作为钳剪痕迹分析与识别的重要依据。  相似文献   

13.
基于卷积神经网络的图像分类算法的优势是传统方法无法比拟的。卷积神经网络利用其设计好的网络结构和权值共享的特点,能够从数量庞大的训练数据中学习图像底层到高级语义的抽象特征,而且端到端的学习省去了在每一个独立学习任务执行之前所做的数据标注。多年来,卷积神经网络经过科研人员的探索和尝试,从最开始的多层神经网络模型,演变出多种优化结构,性能不断提高。本文介绍了基于卷积神经网络图像分类算法的研究进展,叙述了卷积神经网络在图像分类中的经典模型和近年来的改进方法,并对各个模型进行分析,展示各种方法在ImageNet公共数据集上的性能表现,最后对基于卷积神经网络的图像分类算法的研究进行总结和展望。  相似文献   

14.
为了对灾难场景图像进行快速分析和识别,提出了一种基于多分辨率卷积神经网络和残差注意力机制(attention module)相结合的图像分类模型.首先,对灾难场景数据集进行预处理,在相同类型的条件下将其随机划分为训练集和测试集.基于改进的卷积神经网络(convolutional neural network,CNN),...  相似文献   

15.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性.   相似文献   

16.
在公共安全检查领域中,研究毫米波图像目标检测的快速性和精准性的方法具有非常重要的实际应用价值。提出了基于Faster R-CNN深度学习的方法检测隐藏在人体上的危险物品。该方法将区域建议网络(region proposal network,RPN)和VGG16训练卷积神经网络模型相结合,接着通过在线难例挖掘(online hard example mining,OHEM)技术优化训练所提出的网络模型,从而构建了面向毫米波图像目标检测的深度卷积神经网络。实验结果证明所提的方法能高效地检测毫米波图像中的危险物品,并且目标检测的平均精度高达约94.66%,检测速度约为6帧/s,同时对毫米波安检系统的智能化发展有着极其重要的参考价值。  相似文献   

17.
结合卷积神经网络对于特征提取的优势和循环神经网络的长短时记忆算法的优势,提出一种新的基于多尺度的卷积循环神经网络模型,利用卷积神经网络中的多尺寸滤波器提取出具有丰富上下文关系的词特征,循环神经网络中的长短时记忆算法将提取到的词特征与句子的结构联系起来,从而完成文本情感分类任务.实验结果表明:与多种文本情感分类方法相比,文中算法具有较高的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号