首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
含间苯基及甲基侧基聚芳醚砜醚酮酮的合成与表征   总被引:3,自引:3,他引:0  
以2,2’-二甲基-4,4’-二苯氧基二苯砜(α—CH3-DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,通过亲电缩聚反应,合成了一系列主链含四面体构型的砜基及其醚键邻位含有甲基的新型聚芳醚砜醚酮酮聚合物.结果表明,该类聚合物具有较高的玻璃化转变温度(Tg)和良好的耐热性.  相似文献   

2.
聚芳醚酮酮、聚芳醚醚酮酮无规共聚物的合成与性能研究   总被引:3,自引:3,他引:0  
研究了以1,2二氯乙烷为溶剂,以无水三氯化铝/N-甲基吡咯烷酮(NMP)为复合催化体系,在低温条件下,以二苯氧基苯(DPE)、三苯二醚(DPOP)、对苯二甲酰氯(TPC)为原料通过缩聚反应合成的一系列聚芳醚酮酮和聚芳醚醚酮酮的无规共聚物,并用FT-IR、DSC、TGA、X-射线衍射等技术对聚合物进行了表征,结果表明:该系列聚合物为半晶态聚集物,具有很高的热稳定性.  相似文献   

3.
以4,4′-二(4-氯甲酰基苯氧基)二苯砜(SODBC)与4,4′-二苯氧基二苯砜(DPODPS)、4,4′-二(2-甲基苯氧基)二苯砜(o-Me-DPODPS)、4,4′-二(3-甲基苯氧基)二苯砜(m-Me-DPODPS)和4,4′-二(2,6-二甲基苯氧基)二苯砜(o-Me2-DPODPS)等为单体在1,2-二氯乙烷(DCE)、N-2-甲基吡咯烷酮(NMP)、无水三氯化铝(AlCl3)溶剂催化剂体系中,通过低温溶液亲电共缩聚合成了聚芳醚砜醚酮(PESEK),邻位、间位甲基取代、双邻位甲基取代的聚芳醚砜醚酮(o-Me-PESEK、m-Me-PESEK、o-Me2-PESEK)聚合物.用FT-IR、1H NMR、DSC、TGA、WAXD等对聚合物进行了表征,研究了聚合物的溶解性.结果表明:聚合物具有较高的玻璃化转变温度(Tg)、良好的热稳定性和优良的溶解性.  相似文献   

4.
以N,N'-(4,4'-二苯砜)二偏苯三甲酰亚胺酰氯为单体,分别与4,4'-二(2-甲基苯氧基)三苯二酮(o-Me-DPOTPDK)、4,4'-二(2,6-二甲基苯氧基)三苯二酮(o-Me2-DPOTPDK)采用低温溶液亲电缩聚合成了两种主链含酰亚胺砜基甲基取代的聚芳醚酮酮树脂,聚合物的对数比浓粘度为6.6和7.5 mL·g-1.用FT-IR、1H NMR对其化学结构进行了表征,DSC、TGA、WAXD研究了其热转变和形态.研究表明:共聚物有较高的玻璃化转变温度(T8:250,278℃)和热分解温度(5%Td:425℃),常温下能溶于N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮、氯仿和间甲酚等有机溶剂中,可采用溶剂法加工成型.  相似文献   

5.
杂环聚芳醚砜、聚芳醚酮及其共聚物合成与性能研究   总被引:7,自引:0,他引:7  
以自制的新型类双酚化合物4-(2-甲基-4-羟基苯基)-2,3-二氮杂萘-1-酮(mM-HPPZ)为单体,与4,4′-二氟二苯酮,4,4′-二氯二苯砜进行溶液缩聚反应,合成了一类新型间甲基取代聚芳醚砜(PPES)、聚芳醚酮(PPEK)及其共聚物聚芳醚砜酮(PPESK,n(S)/n(K)=1/1)材料,并对其聚合条件作了初步探讨;利用核磁共振、红外光谱分析研究了双酚单体及其聚合物的结构,利用DSC、TGA对聚合物的耐热性能进行了分析。实验结果表明,该类双酚单体具有与双酚类似的活性,可以进行聚合反应,新型间甲基取代聚芳醚玻璃化转变温度高(Tg=520-558K);耐热稳定性好,其在氮气氛下5%热失重温度为693K左右,合成的间甲基取代聚芳醚砜、聚芳醚酮及其共聚物聚芳醚砜酮在氯仿、四氯乙烷、四氢呋喃和酰胺类溶剂中可溶解成膜。  相似文献   

6.
在无水AlCl3及N,N-二甲基甲酰胺(DMF)存在下,将4,4’-(4-氯甲酰苯氧基)二苯砜(SPCI)与3-甲基二苯醚(MDPE)和二苯醚(DPE)在1,2-二氯乙烷中进行低温溶液共缩聚反应,合成了一系列聚芳醚酮醚砜醚酮/甲基取代聚芳醚酮醚砜醚酮(PEKESEK/M-PEKESEK共聚物.经FT—IR,DSC,TG及WAXD等测试表明共聚物为非晶态结构,具有优异的耐热性能,其玻璃化转变温度(Tg)为160-172℃,且随共聚物甲基取代M—PEKESEK结构芋元含量的增加而增加.共聚物在氮气气氛中5%的热失重温度(乃)均在460℃以上,且易溶于氯仿、二氯甲烷及DMF和DMSO等强极性非质子有机溶剂中.  相似文献   

7.
以无水AlCl3/ClCH2CH2Cl/NMP为催化剂/溶剂体系,通过亲电缩聚反应,由二苯醚(DPE),对苯二甲酰氯(TPC)和4,4′-二(α-萘氧基)二苯酮(DNBP)合成了一类新型主链含1,4-亚萘基结构的聚醚酮酮/聚醚酮醚酮酮(PEKK/PEKEKK)无规共聚物。研究了DNBP结构单元对共聚物性能的影响,并对其进行了IR、DSC、TG、WAXD等分析表征。结果表明,共聚物具有优良的耐热性和耐溶剂性,随着共聚物中DNBP结构单元含量的增加,其玻璃化温度(Tg)逐渐升高,而熔融温度(Tm)和结晶度逐渐降低,热分解温度(Td)均大于540℃。与PEKK相比,共聚物的断裂伸长率明显提高,拉伸强度和拉伸模量略有下降,但仍具有良好的力学性能。  相似文献   

8.
在无水AlCl3存在下,将2,6-二苯氧基苯甲腈(DPOBN),4,4′-二苯氧基二苯砜(DPODPS)按照一定的摩尔配比与对-苯二甲酰氯于N-甲基吡咯烷酮/二氯乙烷复合溶剂中进行三元共缩聚反应,合成了一系列含氰侧基的聚醚醚酮酮/聚醚砜醚酮酮共聚物.用IR、DSC、TGA、WAXD等方法对其结构和性能进行了表征.结果表明,所合成的共聚物均为非晶态聚合物,其玻璃化转变温度为162~195℃;TGA分析表明其热分解温度为501~545℃,说明所合成的共聚物具有优异的耐高温性能.共聚物的溶解性能测试结果表明,共聚物都能在NMP、DMF、DMSO等强极性非质子溶剂中溶解及在DCE、THF、CHCl3等普通溶剂中溶解或溶胀.  相似文献   

9.
通过β-萘酚和4,4′-二氟二苯甲酮的缩合反应,合成了一种新芳醚单体-4,4′-二(β-萘氧基)二苯甲酮,将其在亲电反应条件下和二苯醚、芳二酰氯进行共缩聚反应,制备了聚醚酮酮/含萘环聚醚酮醚酮酮无规共聚物,用IR、WAXD、DS、TG和溶解性试验等方法对其进行了表征。  相似文献   

10.
以4,4'-二苯氧基二苯砜(DPODPS)和4,4'-联苯二甲酰氯(BPPC)为原料,采用亲电缩合反应制备了主链含联苯结构单元的聚芳醚砜醚酮酮(PESEKDK),并用红外(FT-IR)、广角X-射线衍射(WAXD)、示差扫描量热法(DSC)、热重法(TGA)等手段对其进行了表征.结果表明:PESEKDK的玻璃化转变温度(Tg)为207℃,在238℃、264℃、283℃处出现3个熔融峰;热分解温度(Td)为561℃,说明聚合物的耐热性能优良.以质量比为50%的T700短碳纤维和PESEKDK熔融共混制备的复合材料的拉伸强度为286 MPa,拉伸模量为30.9 GPa,表明复合材料具有优良的力学性能.  相似文献   

11.
对聚醚醚酮/二苯砜、聚醚醚酮/二苯酮所组成聚合物/稀释剂体系,采用热致相分离法制备了聚醚醚酮多孔膜,探讨了制备具有耐高温、耐溶剂的聚醚醚酮多孔膜的可能性,对聚合物/稀释剂体系的相容性进行理论计算和分析,并研究了聚合物的含量对成膜多孔结构的影响。  相似文献   

12.
采用亲核取代反应, 通过A2+B3方法制备含联苯结 构氟封端超支化聚醚醚酮(HPDEEK-F), 用4-苯乙炔苯酚与得到的氟封端聚合物反应, 制得苯乙炔封端的超支化聚醚醚酮(HPDEEK-PEP), 并研究了其结构和性能. 结果表明, 苯乙炔封端聚合物的玻璃化转变温度高于氟封端聚合物的玻璃化转变温度, 热稳定性好于氟封端聚合物, 两种聚合物在极性溶剂中都具有良好的溶解性.  相似文献   

13.
采用先合成含硫醚键的单体, 后进行低温溶液缩聚的方法, 合成高分子量的新型聚芳硫醚酰胺类树脂-聚芳硫醚砜酰胺(PASSA)和聚芳硫醚酮酰胺(PASKA), 其特性粘数分别为0.72 dL/g(NMP为溶剂)和0.62 dL/g(浓硫酸为溶剂), 并对单体及聚合物进行结构与性能表征. 通过热分析得出聚合物PASSA和PASKA的玻璃化温度分别为279.9 ℃和188.7 ℃, 热分解温度分别为461.5 ℃和467.08 ℃, 表明PASSA和PASKA具有优良的热性能; 溶解性实验表明, PASSA和PASKA是一种耐化学腐蚀性的树脂.  相似文献   

14.
不同侧基对磺化聚醚醚酮质子交换膜的影响   总被引:5,自引:1,他引:4  
以特丁基对苯二酚和邻甲基对苯二酚分别制备两个系列磺化聚醚醚酮. 对聚合物及其膜的一些性能进行了研究, 探讨了不同取代侧基对聚合物溶解性、 热性能、 力学性能和质子传导性等性能的影响.  相似文献   

15.
通过苯基取代的二氮杂萘酮的衍生物1a和1b与活性的含氟单体反应合成了两种新的苯基取代的含二氮杂萘酮结构的聚芳醚酮酮。聚合物3a和3b的结构由FT-IR与NMR进行表征,此类聚合物表现出很高的玻璃化转变温度和优良的热稳定性。  相似文献   

16.
PPESK—PPS共混合金的研究   总被引:1,自引:0,他引:1  
以溶液共混-共沉淀的方式制备了含二氮杂萘联苯结构的聚醚砜酮-聚苯硫醚共混物,用熔融指数仪研究了共混物的加工性能,用DSC考察了共混物的热性能,用PLM,WAXD研究了共混物的结晶行为,用IR分析了两组分的相容性,结果表明,PPS可显著改善了PPESK的加工性能;在一定范围内,PPESK不影响PPS的晶型,但降低了PPS的结晶度,红外测试结果表明共混物属于不相容体系。  相似文献   

17.
B3 型单体及超支化聚醚醚酮的合成与表征   总被引:1,自引:1,他引:0  
采用亲核取代反应,用间苯三酚与4,4′-二氟二苯酮反应合成一种可用于制备超支化聚芳醚酮的B3型单体,由MS,IR和1H NMR等方法对单体进行表征.进一步采用A2+B3法制备超支化聚醚醚酮,研究了端基对其热性能、溶液粘度特性的影响.结果表明,羟基封端聚合物玻璃化转变温度、比浓对数粘度高于氟封端聚合物,热稳定性低于氟封端聚合物.  相似文献   

18.
本文以无水三氯化铝(AlCl_3)为催化剂、1,2-二氯乙烷(DCE)为溶剂,在N-甲基吡咯烷酮(NMP)存在下,将对苯二甲酰氯(TPC)、间苯二甲酰氯(IPC)、二苯醚(DPE)和4,4′-二苯氧基二苯砜(DPODPS)进行低温溶液共缩聚反应,合成了聚醚酮酮和聚醚醚酮酮砜的无规共聚物(PEKK-PEEKKS)。用红外光谱、X-射线衍射、差热分析、热失重和溶解性试验对共聚物进行了表征。实验结果表明。随着分子链中砜基含量的增加,共聚物熔融温度和结晶度下降,但仍具有良好的耐溶剂性能和耐热性能。  相似文献   

19.
以3,3′ 二磺酸钠基 4,4′ 二氯二苯砜(SDCDPS)、 邻甲基对苯二酚、 4,4′ 二氯 二苯砜(DCDPS)为原料, 利用亲核缩聚反应, 通过调整磺化单体(SDCDPS)和非磺化单体(DCDPS)的比例与邻甲基对苯二酚共聚, 合成了一系列具有不同磺化度的磺化聚醚醚砜. 红外光谱证实所合成聚合物为目标产物. 发现邻甲基对苯二酚结构单元的存在, 使聚合物具有较高的离子交换容量, 从而使低磺化度的共聚物具有相对高的质子传导率. 该聚合物具有较高的分子量和良好的热稳定性和溶解性.  相似文献   

20.
以二氟二苯甲酮(DFK)、磺化二氟二苯甲酮(SDFK)和双酚A为原料,合成了双酚A型磺化聚芳醚酮(SPAEK-A),通过FT-IR对其结构进行了表征,并对离子交换容量、磺化度、拉伸强度、弹性模量及热性能进行了测试.结果表明:双酚A型磺化聚芳醚酮具有良好的性能,可以满足质子交换膜的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号